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Abstract: A review of the association between microbes and mental illness is performed, including the
history, relevant definitions, infectious agents associated with mental illnesses, complex interactive
infections, total load theory, pathophysiology, psychoimmunology, psychoneuroimmunology, clinical
presentations, early-life infections, clinical assessment, and treatment. Perspectives on the etiology
of mental illness have evolved from demonic possession toward multisystem biologically based
models that include gene expression, environmental triggers, immune mediators, and infectious
diseases. Microbes are associated with a number of mental disorders, including autism, schizophrenia,
bipolar disorder, depressive disorders, and anxiety disorders, as well as suicidality and aggressive
or violent behaviors. Specific microbes that have been associated or potentially associated with
at least one of these conditions include Aspergillus, Babesia, Bartonella, Borna disease virus, Borrelia

burgdorferi (Lyme disease), Candida, Chlamydia, coronaviruses (e.g., SARS-CoV-2), Cryptococcus neofor-

mans, cytomegalovirus, enteroviruses, Epstein–Barr virus, hepatitis C, herpes simplex virus, human
endogenous retroviruses, human immunodeficiency virus, human herpesvirus-6 (HHV-6), human
T-cell lymphotropic virus type 1, influenza viruses, measles virus, Mycoplasma, Plasmodium, rubella
virus, Group A Streptococcus (PANDAS), Taenia solium, Toxoplasma gondii, Treponema pallidum (syphilis),
Trypanosoma, and West Nile virus. Recognition of the microbe and mental illness association with the
development of greater interdisciplinary research, education, and treatment options may prevent
and reduce mental illness morbidity, disability, and mortality.

Keywords: aggression; anxiety; autism; bipolar; depression; immune; Lyme borreliosis; schizophrenia;
suicide; Tuskegee

1. Introduction

As human beings, we are interdependent upon both the microbiota within us and those
present within our environment. In 2007, the United States National Institutes of Health
Human Microbiome Project was established to study the microbial communities that live in
and on our bodies, with the goal of elucidating their role in human health and disease [1].
With advancing technology, there is greater recognition that infectious diseases contribute
to not only acute but also chronic illness, both physical and mental. Research from the
United States Centers for Disease Control and Prevention (CDC) has recognized “that non-
communicable chronic diseases can stem from a variety of infectious agents” [2]. Identifying
these relationships between pathogens and illnesses can significantly impact human health,
both acutely and chronically. Knowledge of these processes creates opportunities for
prevention or early invention. The end goal is to reduce or eliminate the impact of illness,
especially chronic disease. Scientific evidence demonstrates more support for the role of
infectious agents in cancers, immune-mediated syndromes, neurodevelopmental disorders,
and other chronic conditions [2,3]. To benefit from this research, clinicians, public health
practitioners, and policymakers need to recognize that many chronic diseases may have
infectious origins [2].
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It is recognized that some infectious diseases can play a significant role in the etiology
of neuropsychiatric disturbances. There is little debate that syphilis can cause the develop-
ment of symptoms of various mental illnesses [4]. Some suspect and others recognize that
the novel SARS-CoV-2 virus that is responsible for COVID-19 can contribute to mental ill-
nesses [5]. There exists some uncertainty as to whether some other infections, such as Lyme
borreliosis/tick-borne disease, are associated with neuropsychiatric disorders. However,
there are over 500 journal articles supporting this association [6–13] (Supplementary S1).

A number of barriers exist that impede medical progress. The obstacles include the
following: (1) most psychiatrists have limited knowledge of infectious diseases, (2) most
infectious disease specialists have limited awareness of psychiatric diseases, and (3) most
physicians have a very limited understanding of psychoneuroimmunology. There are also
multiple controversies. How significant are microbes vs. other contributors to the develop-
ment of mental illness? Etiologically, how important are prior infections vs. current, latent,
or active stealth infections? How do infections by multiple pathogens interact with the
disease and affect the clinical presentation? How reliable is the present state of laboratory
testing in determining the presence or absence of a contributory pathogen? What are the
underlying pathophysiological processes involved? Achieving a better understanding of
the nature of the association and the possible contribution of infections to the development
of mental illness potentially opens up new opportunities for prevention and treatment.

2. Materials and Methods

The review identified and evaluated the literature from electronic databases, including
PubMed and Google Scholar, for relevant information on the topics previously identified.
The references discovered in searches were also reviewed for additional relevant references.
In addition, references were also drawn from the libraries previously accumulated by
the three authors. The inclusion criteria were peer-reviewed articles taken from all time
periods, all articles except editorials, without age or gender subject restriction. A few
review articles were included. Most of the references included were listed on PubMed. The
included references were fully read by at least one author. A formal PRISMA analysis of
the literature was considered but was not performed since there was an overwhelming
number of citations related to microbes and mental illness.

The review of the association between microbes and mental illness was performed
in multiple separate stages. As a starting point, we examined the literature tracing the
evolution of thinking on the etiology of mental illness. Definitions of relevant terms were
then clarified. Next, disease models to understand the causes of diseases were defined. A
list of infectious agents with potential psychiatric manifestations was developed (Table 1).
Then, a review of examples of mental conditions potentially associated with infections
was performed. This review included the five mental illnesses with the greatest psychi-
atric disability (autism spectrum disorders, schizophrenia, bipolar disorders, depressive
disorders, and anxiety disorders) [14] and two behaviors of particular concern in psychi-
atric patients (suicidality and aggressive or violent behavior) (Table 2). Next, the disease
models, pathophysiology, and clinical considerations were summarized. This information
was then a foundation to review five different infectious diseases associated with mental
illness: syphilis; toxoplasmosis; COVID-19; Lyme borreliosis and associated diseases; and
group A streptococcal infections and pediatric autoimmune neuropsychiatric disorders
associated with streptococcal infections/pediatric acute-onset neuropsychiatric syndrome
(PANDAS/PANS). Syphilis has historical significance. The other illnesses have been the
subject of more recent interest.
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Table 1. Infectious agents with potential psychiatric manifestations.

Spirochetes

Borrelia burgdorferi sensu lato (new genus name Borreliella) [9–13,15–17] (Supplementary S1)
Borrelia burgdorferi sensu stricto (Lyme disease in USA, Europe)

Borrelia afzelii (Lyme disease mostly in Europe, Asia)
Borrelia garinii (Lyme disease mostly in Europe, Asia)

Relapsing fever group (also known as relapsing fever group Borrelia) [18]
Leptospira species (leptospirosis) [19]
Treponema pallidum (syphilis) [20–23]

Other bacteria

Actinomyces [24]
Bartonella henselae and other species (cat scratch disease, bartonellosis) [25–28]

Brucella species (brucellosis) [29]
Chlamydia species [30,31]

Coxiella burnetii (Q Fever and “Post-Q Fever Fatigue Syndrome”) [32]
Ehrlichia chaffeensis (human monocytic ehrlichiosis) [33,34]

Helicobacter pylori [35]
Mycoplasma pneumoniae and other species [36–38]

Rickettsia species (spotted fever, scrub typhus, African tick bite fever) [39–43]
Streptococcus pyogenes (group A beta hemolytic strep, PANDAS, Sydenham’s Chorea, St Vitus Dance) [44]

Tropheryma whipplei (Whipple’s disease) [45,46]

Viruses

Borna disease virus [47]
Chikungunya virus [48]

Coronaviruses (other than SARS-CoV-2) [49–51]
Enterovirus [52–54]

Cytomegalovirus [55–57]
Epstein–Barr virus [58,59]

Tick-borne encephalitis virus [60]
Hepatitis C virus [61–63]

Human endogenous retroviruses [64–67] H
Human immunodeficiency virus [68]

Human T-cell lymphotropic virus type 1 [69]
Influenza virus [70]

Measles virus [71–76]
Parvovirus B19 [77,78]

Poliovirus [79]
Rubella [80]

SARS-CoV-2 coronavirus [50,81–85]
West Nile virus [86,87]

Parasites [88]

Plasmodium species (malaria) [89,90]
Babesia species (B. microti, B. duncani, other Babesia species (Babesiosis)) [91]

Filaria (filariasis) [88,92,93]
Leishmania species (leishmaniasis) [94]
Toxoplasma gondii (toxoplasmosis) [95]

Taenia solium (neurocysticercosis or cysticercosis) [96–98]
Trypanosoma sp. (trypanosomiasis) [88,99,100]

Fungi

Aspergillus species [24]
Candida [101,102]

Cryptocococcus neoformans (cryptococcosis) [103,104]
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Table 2. Examples of mental conditions potentially associated with infections.

Mental
Conditions

Infections Citations

Autism spectrum
disorders

Babesia [105,106]
Bartonella [105,106]

Borna disease virus (animal models) [107–110]
Borrelia burgdorferi and other tick-borne diseases [105,106,111–117]

Chlamydia pneumoniae [117–119]
Cytomegalovirus [120–124]

Enterovirus [53,54]
Fungi (Aspergillus, Candida) [125–129]

Herpes simplex virus [130–134]
Human herpes virus-6 [118,135]

Infections in early childhood [136,137]
Intestinal microbiome composition changes [138]

Maternal infections or immune activation during pregnancy [139–145]
Mycoplasma: (M. fermentans, M. genitalium, M. hominis, M. pneumoniae) [36,117,118]

Measles virus (subacute sclerosing panencephalitis) [135,146]
Plasmodium (malaria) [147–150]
Rubella (congenital) [80,151–155]

Toxoplasma gondii (Toxoplasmosis) [156]
Varicella zoster virus [157]

Viral infections [158–160]

Schizophrenia

Aspergillus [24]
Bacterial infections [161]

Bartonella [25,162,163]
Borrelia burgdorferi (Lyme disease) [17,164–171]

Borna disease virus [172]
Candida albicans [101,102]

Chlamydia, (C. psittaci, C. pneumoniae) [31,172–175]
Coronaviruses [49]

Cryptocococcus neoformans (cryptococcosis) [103]
Cytomegalovirus [176]

Epstein–Barr virus (EBV) [58,177–179]
Herpes simplex virus [172,180,181]

Human endogenous retroviruses [64,65,172,182–184]
Infections in early childhood [137]

Influenza virus [185–192]
Maternal infections or immune activation during pregnancy [161,182,183,185–195]

Measles virus (subacute sclerosing panencephalitis) [71–76]
Parvovirus [78]
Poliovirus [79]

Rubella [194,196]
Taenia solium (neurocysticercosis or cysticercosis) [88,97]

Toxoplasma gondii [175,176,193,197–201]
Treponema pallidum (syphilis) [23,202–205]

Bipolar
disorders

Bartonella [206–208]
Borrelia burgdorferi [10,165,207,209–211]
Cytomegalovirus [57,176]

Human endogenous retroviruses [212]
Mycoplasma [207,213]

Parvovirus B19 [78]
SARS-CoV-2 [214,215]

Tick-borne diseases [216]
Toxoplasma gondii [176,217]

Treponema pallidum (syphilis) [205,218–220]
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Table 2. Cont.

Mental
Conditions

Infections Citations

Depressive
disorders

Babesia [91]
Bartonella [27,28,162,208,221–224]

Borrelia burgdorferi [10,17,164,225–231]
Borna disease virus [47]
Cytomegalovirus [57]

Enterovirus [52]
Hepatitis C virus [61–63]

Human immunodeficiency virus (HIV) [68,232]
Human T-cell lymphotropic virus type 1 (HTLV-1) [69]

Infections early in childhood [137]
Measles virus (subacute sclerosing panencephalitis) [75]

Plasmodium (malaria) [233,234]
SARS-CoV-2 and other coronaviruses: [50,51,81,235]

Taenia solium (neurocysticercosis or cysticercosis) [96–98]
Treponema pallidum (syphilis) [23,205,218,220]

West Nile virus [86,87,236]

Anxiety
disorders

Bartonella [27,206,207,221,224]
Borrelia burgdorferi [10,164,211,229,237,238]
Epstein–Barr virus [239]

Human T-cell lymphotropic virus type 1 [69]
Mycoplasma pneumoniae [38,207,240,241]

SARS-CoV-2 [50,81,84,235,242]
Streptococcus pyogenes (group A strep) [240,243]

Treponema pallidum (syphilis) [205]

Suicidality

All infections requiring hospitalization (including infections requiring
hospitalization for COPD) [244]

Bartonella [162,206,208]
Borrelia burgdorferi [10,11,165,209,228,231,245,246]
Cytomegalovirus [57]
Hepatitis C virus [247]

Herpes simplex virus type 1 (HSV-1) [248]
Human immunodeficiency virus (HIV) [249]

Influenza virus [250]
SARS-CoV-2 [251,252]

Streptococcus pyogenes (group A Strep) [253]
Toxoplasma gondii [254]

Aggressive or
violent

behavior

Babesia [91]
Bartonella [25,26,162,207,221]

Borrelia burgdorferi [10,16,209,211,246,255,256]
Encephalitis lethargica agent [257,258]

Hepatitis E virus [259]
Herpes simplex virus [260,261]

Infection during childhood [262]
Measles virus (subacute sclerosing panencephalitis) [75]

Mycoplasma [38,263]
Parvovirus [77]

Plasmodium (Malaria) [264,265]
Rabies virus [266–268]
SARS-CoV-2 [81]

Streptococcus pyogenes (group A Strep) [208,241]
Toxoplasma gondii (toxoplasmosis) [269]

Treponema pallidum (syphilis) [204,270,271]
Viral encephalitis [272]

Animal models of infections associated with aggression include Borrelia
burgdorferi in dogs, Bartonella henselae in dogs, B. henselae in horses, B.

burgdorferi postulated in chimpanzee in lay news, rabies virus in multiple
animal species, and gut microbiota in dogs, horses, and pigs.

[273–283]
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3. Results

3.1. Overview

What is the evidence for an association between infections and mental illness? Ad-
dressing this question requires a multifaceted approach. We shall utilize information from
different perspectives to address this question. This includes historical perspectives, defi-
nitions of relevant terms, disease models, awareness of infections associated with mental
illnesses, examples of mental conditions potentially associated with infections, pathophysi-
ology, and clinical considerations. This information shall then be applied to a more detailed
analysis of five quite different infectious diseases associated with mental illnesses.

3.1.1. History of Mental Illness

The earliest evidence of the recognition of mental illness is the discovery of trephi-
nation in skulls dating back thousands of years. Trephination is the removal of a small
area of the skull using an auger, bore, or saw. This practice was likely to relieve headaches
or mental illness based upon the belief in demonic possession [284]. References to what
appear to be mood disorders are noted in the writings of ancient Greco-Roman physicians.
The oldest written description of a schizophreniform type of illness was written in the Ebers
Papyrus from the time of the Egyptian Pharaohs. The Ebers Papyrus is a compendium of
ancient Egyptian Medical Papers listing treatments for multiple illnesses. The description
was found in a section called Book of the Heart [285]. Ancient Egyptians believed that the
mind and the heart were similar to each other. To the Egyptians, “Physical illnesses were
regarded as symptoms of the heart and the uterus and originating from the blood vessels
or from purulence, fecal matter, a poison or demons” [285].

In the first century, Aretaeus of Cappadocia was the first to determine that there was an
association between the brain and the two disparate mood states. Plato spoke of two types
of mania, “One involving a mental strain that arises from a bodily cause of origin, the other
divine or inspired”. Both Hippocrates and Aretaeus tried to prove that, in some cases,
melancholia and mania were of biologic origin, not just a mental response as a reaction to
situations. When it came to hallucinations, the Hippocratic doctors recognized it as a sign
of a medical problem, while most common people still thought it was due to the gods [286].

A commonly held belief was that mental illness was the result of demonic possession,
witchcraft, or an angry god [287]. Based upon this belief, witch-hunting resulted in more
than 100,000 presumed “witches” being burned at the stake. This practice did not decline
until the 17th and 18th centuries [288,289]. There is speculation that the witch trials in
Salem, Massachusetts, in the 1600s may have been a response to an epidemic of autoim-
mune encephalitis in which individuals had thrashing fits with bizarre behavior, possibly
caused by an autoimmune process [290]. Hypothesized causes of the bizarre behavior
include encephalitis lethargica, Huntington’s chorea, a rye fungus causing anti-N-methyl-
D-aspartate receptor encephalitis, and Lyme disease [289,291,292]. For centuries, based
upon the belief in supernatural forces and demonic possession, the mentally ill were treated
very poorly, subjected to physical restraints and solitary confinement in asylums.

In the first part of the 1800s, Wilhelm Griesinger, a German psychiatrist and neurologist,
was an active proponent of the theory that “All mental illness is disease of the brain” [293].
From this vantage point, mental disorders were placed more clearly in the biological
domain of medicine and no longer in the realm of the mystical or supernatural. Griesinger’s
strong belief in this postulate led him to become an advocate for better and more humane
treatment of those who were mentally ill in asylums. Philippe Pinel and Dorothea Dix
further advanced the concept of humane treatment for the mentally ill in the 1800s [294].

In 1887, the German psychiatrist Emile Kraeplin first described what he called “demen-
tia praecox”, which he believed was a disease of the human brain. In 1908, Eugen Bleuler, a
Swiss psychiatrist, changed the name to schizophrenia. Furthering this medicalization of
psychiatry in the early 1900s was the theoretical belief that a focal infection was the source
of mental illness or brain disorders.
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An American psychiatrist, Henry Cotton, who had undergone some psychiatric train-
ing in Europe and was a protégé of the renowned psychiatrist Adolf Meyer at John Hopkins,
became a strong advocate of this theory [295]. His basic belief was that eliminating the
source of infection was the only way to cure an individual’s mental illness. Cotton served
as the medical director and superintendent of the New Jersey State Hospital in Trenton,
N.J., from 1907 to 1930. He went on to teach that chronic mental illness was the result of
ongoing, latent, and somewhat stealth or unrecognized infections. For him, the proper
treatment of a mentally ill individual would be the removal of the initiating and offending
infectious site. This often led to the removal of the affected organ. In the name of treatment,
teeth were pulled, and the uterus or parts of the gastrointestinal tract or other body parts
were surgically extracted. Unfortunately, what initially appeared to be a promising concept
lacked sufficient evidence and resulted in the maiming and disfigurement of many individ-
uals. In the end, it became clear that this was a horrific treatment intervention. Although
the concept that biologic influences, including infections, were at play in mental disor-
ders indicated thinking in the right direction, Dr. Cotton’s interpretation was disfiguring
and barbaric.

Sigmund Freud recognized the value of acquiring insight into and an understanding
of psychodynamic development to better explain motivation. Anna Freud, Erik Erikson,
and others further expanded on defense mechanisms and developmental theories.

In the 1950s, “the catecholamine hypothesis of affective disorders” emerged. This
theory attributed mood disorders to deficits or excesses of certain catecholamines as the
physiologic cause of mental illness [296].

In the late 1970s, the biopsychosocial model of psychiatric illness was developed
by Drs. George Engel and John Romano. This approach recognized that there was a
combination of biological, psychological, and social contributors to mental illness.

Understanding the inner workings of the mind and the brain has always been chal-
lenging. For its weight, nothing is more complex than the human brain. For many years,
the living brain was seen as a mysterious black box that could not be understood. The
development of brain imaging technology with computed tomography, magnetic resonance
imaging, positron emission technology, single-photon emission technology, and other neu-
roscience advances allowed the imaging of the anatomy and physiology of the living brain.
These techniques improved the capacity to better understand the complexities and brain
circuits involved in mental functioning.

Advances in gene technology hastened interest in the genetic causes of mental illnesses.
Darwinian or evolutionary medicine recognized that most illness is not caused by disease
genes but instead by susceptibility genes interacting with environmental contributors. The
environmental contributors include competing organisms, such as microbes [297].

With a greater understanding of genetics came the recognition that the interaction
between genes and health is even more complex than previously realized. This awareness
has resulted in the recognition of the importance of epigenetic factors. The field of epige-
netics, as defined by the CDC, refers to “the study of how your behaviors and environment
can cause changes that affect the way your genes work. Unlike genetic changes, epigenetic
changes are reversible and do not change your DNA sequence, but they can change how
your body reads a DNA sequence” [298]. Focusing only on genes, without attention to
epigenetic factors, will only give us part of the genetic picture when studying mental illness.
Environmental contributors also play an important role [299].

3.1.2. History of Associating Microbes and Mental Illness

Microbiology began with the lens. It was originally used for millennia for other
purposes. The machine to manufacture precision lenses was designed by Leonardo Da
Vinci [300,301]. Combining two lenses resulted in the microscope that created the technol-
ogy to observe both microorganisms and human cells. Hooke and Leeuwenhoek observed
microorganisms in the late 1600s [302].
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Rudolph Virchow used the microscope to directly visualize anatomical changes in
cells and groups of cells when a patient became ill. He proposed that when ill, the whole
organism does not get sick. Instead, it is only particular cells or groups of cells that change,
thus opening up the new field of cellular biology. The use of a microscope now added the
ability to utilize direct visual anatomical changes for identifying diseases. No longer did
illnesses need to be diagnosed by clinical symptoms alone. Virchow also coined the term
“zoonosis”, indicating the connection between human and animal health, which could be
considered the foundation of the concept of One Health or One Medicine [303].

The highly significant work of Robert Koch, Friedrich Loeffler, and Louis Pasteur in
the late 1800s led to the discovery that microbes (germs) could cause disease [304]. The
science of medicine changed dramatically when the germ theory of disease was proven.
This awareness opened up new avenues for exploration. These advances dramatically
improved the science of medicine in the 1800s.

As previously noted, theories on the origins of mental illness remained a mix of science,
spirituality, and myth for centuries. An early attempt utilizing germ theory in the field of
mental health is exemplified in the following report:

“In 1896 Scientific American published an editorial entitled ‘Is Insanity Due to
a Microbe?’ Two doctors described how they had injected cerebrospinal fluid
of mentally ill patients into rabbits, which later got sick. Subsequently, the
rabbits showed behavioral issues. The authors concluded that ‘certain forms of
insanity’ could be caused by infectious agents, ‘similar to typhoid, diphtheria
and others.” [305]

Although this early work could explain some diseases, the etiology of mental illnesses
remained somewhat puzzling. The recognition of a potential connection between infections
and mental symptoms may have been partially based on ongoing observations of mental
changes, e.g., psychoses, that occurred with some bacterial illnesses. Throughout the 1800s
and well into the 1900s, general paralysis of the insane, also known as general paresis and
caused by neurosyphilis, was a significant degenerative mental illness known to psychiatry.
In 1913, Hideyo Noguchi found traces of Treponema pallidum (the bacteria that causes
syphilis) in the brains of deceased general paresis patients who had been hospitalized for
mental illnesses at the Central Islip State Hospital for the Insane [20]. In 1943, penicillin
became the main treatment for syphilis [306].

After penicillin became an effective treatment for syphilis, there was little attention to
the association between infections and mental illness for many years. In the early 1990s,
Fallon began writing about the association between Lyme disease and mental illness [13].
In 1996, the Stanley Laboratory of the Johns Hopkins University School of Medicine was
founded as a result of the efforts of Robert Yolken and E Fuller Torrey to elucidate and
promote research and training on the role of infection and immunity in the etiology of
schizophrenia and bipolar disorders. Work at the Stanley Center, other collaborating
centers (Karolinska Institute, University of Heidelberg, University of Cologne, University
of Pittsburgh, Centre for Register-Based Research in Denmark, Sheppard Pratt, Washington
University, University of Cambridge, University of Maryland, Harvard School of Public
Health, etc.), and other projects funded by it has resulted in extensive research and many
peer-reviewed publications. This improved the understanding of the association between
microbes and mental illness [307]. The field has continued to progress since then. Presently,
there are a vast number of articles in the peer-reviewed literature addressing different facets
of the association between microbes and mental illness [308].

3.2. Definitions of Relevant Terms

3.2.1. Microbes and Related Terms

A microbe has traditionally been defined as a very small, living thing that can be
seen only with the use of a microscope. There are a number of related terms. The human
microbiota is the full array of microorganisms that live on and in humans. The human
microbiome is the combined genetic material of the microorganisms that live in and on
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humans. The pathobiome is the set of human-host-associated organisms (crucially en-
compassing prokaryotes, eukaryotes, and viruses) associated with reduced (or potentially
reduced) health status as a result of interactions between members of that set and the
human host.

3.2.2. Health

A generally accepted definition of health is the ability to adapt and to self-manage in
the face of social, physical, and emotional challenges [309].

3.2.3. Illness

Illness refers to an unhealthy condition of the body or mind: “The human experience
of sickness” [310] and “The innately human experience of symptoms and suffering” [311].

3.2.4. Mental Health

According to the American Psychiatric Association, mental health is a state of mind
characterized by emotional well-being, good behavioral adjustment, relative freedom from
anxiety and disabling symptoms, and a capacity to establish constructive relationships and
cope with the ordinary demands and stresses of life [312]. The World Health Organization
defines mental health as “a state of well-being in which the individual realizes his or her
own abilities, can cope with the normal stresses of life, can work productively and fruitfully,
and is able to make a contribution to his or her community” [313]. In summary, men-
tal health occurs when mental functioning (cognition, emotions, vegetative functioning)
reflects the individual’s life situation and facilitates adaptation with the capacity to experi-
ence well-being, pleasure, fulfilling relationships, and productive activities; the ability to
recognize and contend with adversity; and the mental flexibility to adapt to change.

3.2.5. Mental Illness

The American Psychiatric Association defines a mental disorder as a syndrome char-
acterized by a clinically significant disturbance in an individual’s cognition, emotion
regulation, or behavior that reflects a dysfunction in the psychological, biological, or de-
velopmental processes underlying mental functioning [312]. In a state of mental illness,
mental functioning does not reflect the life situation, and there is an impairment of adaptive
capabilities; an impaired capacity to experience well-being, pleasure, fulfilling relationships,
and/or productive activities; a diminished ability to recognize and contend with adversity;
and/or restricted mental flexibility to adapt to change.

3.2.6. Acute vs. Chronic Illness

Acute illnesses generally develop suddenly and last a short time, often only a few days
or weeks. Chronic conditions, by contrast, are long-developing and may worsen over an
extended period of time—months to years. Chronic diseases more often can be controlled
but not cured. Some define chronic diseases as lasting at least 3 or 6 months. Chronic
diseases are defined broadly by the CDC as “conditions that last 1 year or more and require
ongoing medical attention or limit activities of daily living or both” [314]. Post-acute is a
term that has more recently been used.

3.3. Models for Understanding Disease

Illness is caused by an underlying disease process. To better understand the underlying
disease process, a variety of approaches can be used.

3.3.1. A Multisystem Approach to Understanding the Cause of Disease

A multisystem approach is useful when analyzing complex issues, such as the cause
of disease. It allows for a complex model with many contributors. All systems are inter-
connected and affect other systems to varying degrees. Furthermore, they are constantly
changing and in dynamic balance with each other. Time is a significant dimension, and
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different effects occur over time. Systems have evolved over the dimension of time. The
combination of the systems and evolutionary approaches allows us to organize current
information in a much more efficient manner [315].

3.3.2. An Evolutionary or Darwinian Approach to Understanding the Cause of Disease

An evolutionary or Darwinian approach applies the principles of evolutionary biology
to help explain problems in medicine and public health and prevent human disease. It ex-
plains how disease occurs from the perspective of evolution. From this perspective, disease
can be the result of genetic vulnerabilities from the unique path of evolution, design compro-
mises, and competing organisms. Competing organisms can include microbes. “Core princi-
ples drawn from evolutionary biology include selection, drift, plasticity, mismatch, cultural
practices, trade-offs, life history traits, antagonistic pleiotropy, heterozygote advantage,
constraints, biologic defenses, co-evolution (i.e., microbiome), adaptation/maladaptation,
novel environments, and the genome-phenome relationship” [299,316].

3.3.3. An Organismal Approach to Understanding Disease

Disease results from an interaction of host vulnerabilities and environmental contribu-
tors. Host vulnerabilities may be genetic or otherwise, and the environmental contributors
may be of infectious or non-infectious origin. While acknowledging that there are many
non-infectious contributors associated with mental illness, this article specifically focuses
upon the infectious contributors. The infectious and/or non-infectious contributors may
then provoke immune activity that can result in the impairment of adaptive mechanisms,
resulting in disease progression [139,317–325] (Figure 1).

ff

 

ff

Figure 1. Disease progression. Disease progression evolves over time. The unique path of evolution
can create genetic vulnerabilities. Genetic and other vulnerabilities may then interact with pathogens
and other disease contributors to begin a pathological process with regulatory dysfunction. The
resulting pathological cascade may then lead to symptoms and syndromes (groups of symptoms).
The symptoms, and syndromes (e.g., chronic stress, sleep deprivation, immune dysfunction) may
further exacerbate disease progression.
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3.3.4. Infections Associated with Mental Illness

A myriad of journal articles address different aspects of the possible connection
between infections and mental illnesses. Some mental illness symptoms, such as those
associated with delirium, are generally, although not exclusively, associated with the acute
phase of infection [326,327]. Viruses and vector-borne diseases have drawn some of the
greatest attention. There are at least 320,000 different species of viruses in mammals [328].
Vector-borne diseases are mostly zoonotic, i.e., diseases that are transmitted between
species, from animals to humans, or from humans to animals. It appears that vector-borne
diseases are increasing, and possible explanations include heightened awareness, climate
change, changing ecosystems, globalization, human population growth, and toxic warfare
environments [329,330].

A partial list of infectious agents that are associated with potential psychiatric mani-
festations is found in Table 1. It includes spirochetes, other bacteria, viruses, parasites, and
fungi [105].

3.3.5. What Mental Illnesses Are Associated with Specific Microbes?

A systematic review and meta-analysis was previously conducted on mental illnesses
associated with SARS-CoV-2 infection [331], and a prior PRISMA analysis was performed
on mental illnesses associated with Lyme borreliosis [7].

A search was conducted for specific microbes associated with five mental illnesses with
the greatest psychiatric disability and two behaviors of particular concern in psychiatric
patients (Table 2).

The microbes identified with these conditions collectively included Aspergillus, Babesia,
Bartonella, relapsing fever group Borrelia, Borrelia burgdorferi, Borna disease virus, Candida,
Chlamydia, SARS-CoV-2 (COVID-19) and other coronaviruses, cytomegalovirus, enterovirus,
Epstein–Barr virus, hepatitis C virus, herpes simplex virus, human endogenous retroviruses,
human herpesvirus-6, human immunodeficiency virus (HIV), human T-cell lymphotropic
virus type 1 (HTLV-1), influenza viruses, measles virus, Mycoplasma, Plasmodium, rubella
virus (congenital), Shigella, group A Streptococcus, Taenia solium, Toxoplasma gondii, Treponema
pallidum (syphilis), varicella zoster virus, and changes in intestinal microbiota composition.

3.3.6. Disease Models

• Acute vs. chronic infections

As noted earlier, the CDC defines a chronic illness as lasting one year or more [314]. The
nomenclature regarding acute vs. chronic infections and acute vs. chronic manifestations of
infectious diseases can be confusing. Some acute infections can be “hit and run” and cause
residual injury that leads to dysfunction and chronic disease, with the illness continuing
and sometimes progressing long after the infection is clearly eradicated. Developing
mitral valve stenosis following a streptococcal infection is an example of this. On the
other hand, infections can also be recognized as being chronic with ongoing symptoms
and often disease progression as the pathogen persists. An example of this is seen with
syphilis. Not all infections are easily placed into these two categories. Some infections
may be acute, then be latent, and then be reactivated at a later time. An example of this
is varicella zoster (chicken pox), which can be reactivated as shingles decades later when
the patient is in an immunocompromised state. Some infections may suppress and/or
evade the immune system, which results in difficulty detecting them by commonly used
immune-based testing. These immune-evasive, persistent infections can cause symptoms
that are chronically progressive or chronically relapsing and remitting. An example is
Borrelia burgdorferi [332–337]. Persistent or progressive symptoms after commonly used
treatment for Borrelia burgdorferi infection are viewed by some researchers as caused by a
self-perpetuating immune process in the absence of ongoing active infection [338].

• Complex interactive infections
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Koch’s initial view of infectious disease is that many human diseases are caused by
microbes that exert their effects independently of other microbes, environmental factors, or
genes. However, most common human diseases are caused by the interaction of environ-
mental insults and susceptibility genes [339]. Many of the susceptibility genes are diverse
determinants of human responses to environmental factors, e.g., infection.

Informative laboratory methods for complex disorders must address both genetic and
environmental factors [340].

Some infection-associated symptom presentations are not the result of single pathogens
but instead the result of complex interactive infections with multiple infectious agents.
These infections could be compared to a foxhunt, in which three different species (humans,
horses, and dogs) participate. In this case, the foxhunt would have a very different effect
than if only one species were involved. Human immunodeficiency virus infection and
acquired immune deficiency syndrome (HIV/AIDS) is one example in which a pathogen
(virus) causes immunodeficiency, allowing other microbes to become more pathogenic to
the host. This pattern can also be seen with tick-borne diseases, as multiple tick-borne
pathogens such as Borrelia, Babesia, Anaplasma, Ehrlichia, other Rickettsia, Nematodes, etc.,
may be present at the same time [341]. Additional unidentified, non-testable pathogens
may also be contributory. The Borrelia bacterium has the capacity to cause immunosup-
pression and immune evasion [332–337]. This can result in previously asymptomatic latent
infections becoming symptomatic. These previously acquired latent infections may not
have been transmitted via tick bites and may include viruses and Bartonella and Mycoplasma
species [342–344]. In addition, tick-borne polymicrobial coinfections can have an inter-
active effect upon the Borrelia infection [345–347]. SARS-CoV-2 viral infections have also
been associated with complex interactive infections. There is anecdotal evidence that
COVID-19 infections have resulted in the re-activation of latent Borrelia infections [348].
Increased levels of Borrelia-specific IgG antibodies strongly correlated with SARS-CoV-2
viral severity and the risk of hospitalization [349]. The human microbiota has been impli-
cated in the development of a variety of mental illnesses, including Alzheimer’s disease,
attention-deficit/hyperactivity disorder, anorexia nervosa, autism spectrum disorder, bipo-
lar disorder, major depressive disorder, schizophrenia, and substance use disorders [350].
The human gut microbiome is recognized to have a significant impact upon both health and
disease, as well as human metabolism, nutrition, physiology, and immune functioning. An
altered gut microbiome is associated with different disease states [138,351]. The human mi-
crobiome is not just located in the gut. It can also be located in other parts of the body [350].
Some of the human microbiota can be located deep in connective tissue, where they may
be protected from the immune system and attempts at antibiotic treatment [352–354].

When there is a complex interactive infection, it is sometimes possible to say that 1 + 1
does not = 2, but instead, 1 + 1 = 11.

• Total load theory

Microbes may also interact with other non-infectious environmental contributors. The
initial foundation of this view is based upon the disease triangle, which is a conceptual
model showing the interactions between the environment, the host, and an infectious (or
abiotic) agent [355]. This concept is addressed in the total load theory. Here, the focus is on
how the presence of multiple stressors can result in an increasing number of developmental
delays, cognitive problems, behavioral and emotional issues, and other impairments that
have been seen in children in recent years. The approach views groups of symptoms as
being the result of reaching a tipping point where development is stressed beyond the
capacity for healthy adaptation. At that point, the youth shows signs of overload. This
state is then manifested as attentional difficulties, developmental delays, mood issues,
autoimmune problems, failure to thrive, repeated ear infections, etc. Some of the elements
that can lead to developmental issues include birth trauma, pregnancy complications,
nutritional deficiencies, frequent ear infections, etc. [356].
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3.4. Pathophysiology

3.4.1. Is Trauma from Infection or from the Host’s Immune Reaction to the Infection?

Symptoms associated with infectious disease are a result of both the direct effects of
the pathogen upon the host and the indirect effects caused by host immune activation. In an
acute infection, the early inflammatory (innate immune) response evolves into a humoral
(adaptive immune) response. In a chronic infection, there may instead be a persistence
of the inflammatory state without effective adaptive immunity, and sometimes with an
autoimmune response. This interaction between pathogen and host contributors results in
trauma to the host. Microbial contributors to pathophysiology include toxin release, cell
penetration, the effects of bacterial lipoproteins, and the incorporation of pathogen genes
into the host genome. Host response contributors can include cytokine release, inflamma-
tion, inflammation-causing metabolic changes, the effects of bacterial lipoproteins and other
pathogen-associated molecular patterns (PAMPs) such as toll-like receptor signaling, the
interaction of heat shock proteins with the immune system, oxidative stress, the action of
nitric oxide, other cellular responses, and autoimmune reactions [9,12,357–359]. Oxidative
stress and changes in nitric oxide are also well recognized as being a part of the stress
response and the pathogenesis of depression and other mental illnesses [360–362].

In addition, infections outside the central nervous system (CNS) can have immune
and toxic effects upon the CNS, with molecular mimicry leading to autoantibody formation
and cellular immune responses against host neuronal structures, oxidative stress, glutamate
excitotoxicity, changes in homocysteine metabolism, mitochondrial dysfunction, and altered
metabolism of tryptophan with decreased production of the neurotransmitter serotonin
and increased production of neurotoxic and excitotoxic quinolinic acid and kynurenine
metabolites [363–367].

The glymphatic system is important in healthy brain functioning and the prevention
of the accumulation of neurotoxic cellular waste products [368,369]. A common neuropsy-
chiatric symptom with a microbial infection is some form of insomnia [370]. During sleep,
the glymphatic system expands, and our brain contracts as our immune system attempts to
eliminate waste and cleanse itself [371]. If a bacterial toxin released by living organisms
or perhaps dead remnants of microbes is not cleared, destructive secretions or ongoing
immune stimulation can result in neuroinflammation and neural degeneration. This then
has the potential to contribute to cognitive, behavioral, and emotional difficulties.

These pathophysiological processes are hypothesized to result in neuropsychiatric
symptoms [12,364–366,372–375]. Bacterial infections are associated with many autoimmune
diseases involving chronic inflammation and demyelination [376]. The pathophysiology of
how these mechanisms impact the brain is addressed in the field of psychoneuroimmunol-
ogy [377].

3.4.2. Psychoneuroimmunology or Psychoimmunology

Psychoneuroimmunology (formerly known as psychoimmunology) is the study of
the connections between the brain and the immune system. There are basically two major
communication networks in the brain—the neurotransmitter system and the immune
system. Although the blood–brain barrier is a barrier to some things, it is not an absolute
barrier to the immune system. Immune activity in the body releases cytokines, chemokines,
antibodies, and other substances that impact immune activity in the brain [378,379].

Infections can have several biochemical effects. One of the most significant effects
relevant to mental illness is the effect of inflammation upon the kynurenine pathway. This
is a pathway that converts tryptophan into serotonin and melatonin. Chronic infections that
do not result in adaptive immunity can instead provoke persistent inflammation. When the
brain is exposed to an inflammatory state, there is an increase in an enzyme, indoleamine
2,3-dioxygenase (IDO), that shifts the conversion of tryptophan away from serotonin,
melatonin, and kynurenic acid (a neuroprotective compound) and instead pushes the
conversion to quinolinic acid, which is a neurotoxin and an N-methyl-D-aspartate (NMDA)
agonist [380]. Therefore, ongoing chronic inflammation switches the brain from making
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necessary neurotransmitters, neurohormones, and neuroprotective substances toward
self-destructive activity.

Infections in the body can therefore have immune-mediated effects upon the brain
through cytokine and biochemical effects. These changes can result in the dysfunction of
limbic and paralimbic brain circuits, impairing emotional functioning and contributing to
psychiatric symptoms and illnesses [381–387].

3.4.3. Clinical Presentation Variability

It is clear from clinical observations of all infectious diseases that the same infection
can have a very different presentation in different individuals. This is the result of a
combination of different host and pathogen considerations. There are many genetic and
other susceptibility and resistance contributors. Microbial variables can include the load
of organisms, pathogen strain variability, and coinfections. Host variables include age,
genetic, and other susceptibilities.

3.4.4. Infections Early in Life with Later Consequences

Accumulating evidence supports the concept that infections early in life may play a
role in the later development of mental disorders. Infections with herpes simplex virus,
cytomegalovirus, rubella, and Toxoplasma gondii during the prenatal period are examples
of infections that can result in fetal neurodevelopmental abnormalities. These can include
structural abnormalities, such as hypoplasia of different areas of the brain, as well as
functional problems. The resultant cerebral dysfunction can manifest as behavioral issues,
learning problems, autistic spectrum disorders, or mental retardation [9,105].

One population-based cohort study utilizing a large, well-documented Australian
database looked at the relationship between early exposure to infection between birth and
4 years and the subsequent development of mental disorders in children aged 5–13 years.
The authors found that there was a positive correlation between the rates of childhood
mental disorders and infection in the first four years of life. The authors found a moderate
association of infection during this time period with autistic spectrum disorder and other
developmental disorders, as well as externalizing disorders. In addition, there was a
smaller but significant association with internalizing disorders [388].

A review of a nationwide Danish register-based cohort of over one million children
born between 1995 and 2012 attempted to determine whether there was any association
between hospitalization for infection and the later development of mental illness. The
investigators found that youths who were medically hospitalized with infectious illnesses
have an 84% increased risk of later developing a mental disorder. The most common mental
disorders found included schizophrenia, obsessive–compulsive disorder, tics, attention-
deficit hyperactivity disorder, oppositional defiant behavior, conduct disorder, personality
and behavior disorders, autism, and mental retardation [389].

In another study, children with autism were found to have substantially greater
odds of neonatal and early childhood infections when compared to children with other
developmental disorders and healthy controls [136].

In summary, there is increasing evidence that the impact of infections early in life
may be an important contributor to the later development of a mental illness. The various
mechanisms by which this occurs require further study.

3.5. Clinical Considerations: Assessment

The standard of care in medicine has always been the detailed clinical evaluation.
Like other illnesses, the search for the diagnosis and cause of a condition may be initiated
by using a screening assessment followed by a thorough history, a review of systems, a
comprehensive psychiatric clinical exam, a mental status exam, a neurological exam, and
a physical exam relevant to the patient’s complaints. Laboratory or other testing may be
ordered based upon the clinical assessment. The diagnosis and the cause of the condition
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are determined based on a knowledge of the medical literature, clinical judgment, pattern
recognition, and a knowledgeable interpretation of all clinical findings [10,390].

3.5.1. Clinical Assessment

The nature of the clinical assessment to determine whether microbes may be causing
mental illness is an emerging field. Since infections that contribute to mental illness often
cause multisystem illness, a comprehensive multisystem assessment can be helpful in
determining the diagnosis and the pathophysiology. It can be challenging to differentiate
between psychosomatic, somatopsychic, and multisystem illnesses and medical uncer-
tainty [391]. Two assessments were previously developed for Lyme disease [392,393]. The
General Symptom Questionnaire (GSQ-30) was developed and validated to fill the need for
a brief patient-reported measure of multisystem symptom burden, and it can be useful in
both clinical and research settings [394]. A multisystem assessment has been developed for
Lyme borreliosis with a particular emphasis upon neuropsychiatric symptoms, which could
be adapted for the assessment of any infection(s) causing mental illness. This assessment is
readily available and includes screening questions, three clinical assessment forms (24-item,
61-item, full assessment), and a coinfection screen [10] (Supplementary S2 and S3).

3.5.2. Laboratory and Other Diagnostic Testing

In addition to a thorough history and physical exam, a number of diagnostic tools
can assist the assessment. This includes laboratory testing, structural and functional brain
imaging, and neuropsychological testing. The sensitivity and specificity of laboratory
testing of body fluids (blood, cerebrospinal fluid, urine) and tissue for the myriad of
microbes that are associated with mental illness vary over a wide spectrum. Some are
generally considered very accurate and extremely helpful in determining the presence
or absence of a pathogen. On the other hand, laboratory assays are presently available
only for some microbes, and their interpretative criteria have significant limitations. While
serologic testing is commonly used for the lab diagnosis of microbes associated with mental
illness, the detection of an antibody response to a pathogen can provide evidence of past
exposure and infection but does not necessarily indicate an active, ongoing infection. At
the same time, the presence of an infection does not alone prove that an infectious agent
caused or contributed to any given psychiatric symptom. Psychiatric and other late-stage
manifestations of an infection are more likely to occur when an infection is not adequately
diagnosed and/or treated in the earlier stages of infection. A common error contributing to
a lack of diagnosis or late diagnosis is confusing public health surveillance criteria with
diagnostic criteria. As emphasized by the US CDC, “surveillance definitions are designed
to study and identify trends in a population. . . Alternatively, clinical diagnoses are patient
specific. Unlike surveillance definitions, ALL available diagnostic data are considered
in a clinical diagnosis, including additional clinical, epidemiological and laboratory data
not used for national health system surveillance. Therefore, a clinical diagnosis may be
made even when a surveillance definition may not be met and vice versa is also true.
Failure to meet a surveillance definition should never impede or override clinical judgment
during diagnosis, management, or treatment of patents [sic]” [395]. Future testing may
be more dependent upon metabolomics, the measuring and assessing of metabolites to
provide specific metabolic profiling of biological fluids to help identify biomarkers for
infectious disease diagnosis [263] as well as other “-omics” testing, such as proteomics,
transcriptomics and metagenomic next-generation sequencing.

3.6. Treatment Options

Treatment must be individualized, and multidisciplinary approaches are often ben-
eficial. Treatment can be divided into three basic areas—treatment of the infection(s) or
other contributor(s), immune interventions, and treatment of the resulting symptoms and
any other potential contributor(s). Initial subsequent interventions are dependent upon an
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understanding of the pathophysiological process, how the disease contributors interact,
and the primary driver of disease perpetuation and progression.

When a patient has an inadequate response to psychotropics and infection is a possi-
bility, antimicrobials are a consideration. When directly treating an infection, the choice of
antimicrobial(s) is dependent on the microorganism, its expected or laboratory-obtained
antimicrobial sensitivities, the location of the infection (e.g., CNS vs. non-CNS infection),
and the medication’s adverse effect profile. It is important to note that many psychiatric
conditions in which microbes may play an etiologic role are considered to be due not to a
direct CNS infection but rather to a non-CNS infection that generates a pathogenic immune
response with deleterious CNS effects. Antimicrobial treatment may be associated with a
Jarisch–Herxheimer reaction, in which there may be a transient exacerbation of symptoms
associated with the infection, including neuropsychiatric symptoms [12]. If there is a plau-
sible mechanism for a non-infection environmental contributor, e.g., environmental toxin
exposure, the mitigation of ongoing exposure, if any, to the environmental toxin and other
measures to limit toxin exposure must be considered.

When immune-mediated symptoms are present from an active infection, a prior
infection, or some non-infection immune provocation, consider immune-modulating inter-
ventions. With immune interventions, the choice of treatment is dependent upon whether
or not there is immune suppression, excessive inflammation, autoimmunity, and/or a
failure of adaptive immunity.

When symptoms such as chronic stress and sleep deprivation contribute to compro-
mised immunity, consider symptomatic treatment. Regarding symptomatic treatment, it is
necessary to perform a comprehensive clinical examination and then make a list with the
patient, ranking which symptoms are the most severe and which symptoms most impede
recovery. It is important to consider how symptoms interact with each other. This can help
determine which symptoms are the most critical in contributing to disease perpetuation
and progression. This type of reflection will help determine which symptoms to treat and
in which order.

When a patient has a relapse, treatments that have been effective in the past are a
consideration. When a patient is treatment-resistant, treatments that have not been used
in the past are a consideration. Constant treatment revisions are needed depending upon
whether the patient is improving or showing further disease progression. What has initially
caused a condition may be different from what perpetuates that same condition.

From treating thousands of patients over decades, the authors (RB, RG) have found
that the symptoms that usually need to be treated first are non-restorative sleep and the
symptom(s) that cause the greatest chronic stress in the patient. Non-restorative sleep is
often associated with fatigue and cognitive impairments, sometimes called “the terrible
triad” [9,396]. A lack of restorative sleep is particularly significant in causing immune
dysfunction, the failure of adaptive immunity, and disease progression [371,397,398]. In
addition to non-restorative sleep, other symptoms frequently causing chronic stress in
the patient include emotional symptoms (depression, anxiety, depersonalization, mood
swings, psychosis, intrusive symptoms), chronic pain (headaches, neuropathy, radiculopa-
thy, musculoskeletal pain), multisystem somatic symptoms (neurological, gastrointestinal,
dysautonomia, cardiac, genitourinary, etc.), and addictive disorders [10].

Education to help the patient, the caregivers, and those in the support circle better
understand the condition is always a critical component of treatment.

Successful psychiatric management can sometimes result in a reduction in infection.
On the other hand, a successful reduction in infection can sometimes result in reduced
psychiatric symptoms. Our current technological limitations prevent us from being sure
that all pathogens have been eradicated. After stabilization, constant vigilance is needed to
be alert to the possibility of a relapse that would require additional treatment.
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3.7. Healthcare Delivery Issues

Adequately understanding the association between microbes and mental illness is one
challenge, but using these insights to sufficiently impact the healthcare delivery system
is an additional challenge. Our healthcare system is not structured to readily adapt to
new approaches to emerging diseases. Super-specialization, a silo mentality, the rigidity
of computerized medical electronic systems, insurance company criteria, and financial
limitations impair our ability to adequately approach multisystem illness with complex
infectious causes and psychiatric manifestations. The education of healthcare providers
is a first step, with curricula addressing these issues in medical schools, residency pro-
grams, and allied healthcare programs. Multidisciplinary cooperation, especially between
psychiatrists, psychoimmunologists, and infectious disease specialists, is needed [399].

3.8. Examples of Microbes Associated with Mental Illness

Five infectious diseases described as examples of microbes associated with mental
illness are syphilis (a sexually transmitted spirochetal disease); toxoplasmosis (a zoonotic
parasitic disease caused by Toxoplasma gondii); COVID-19 (a respiratory-transmitted viral
disease); Lyme borreliosis and associated infections (zoonotic vector-borne disease); and
group A beta hemolytic streptococcal infections and PANDAS/PANS (an autoimmune
disease induced by infection and other provocations).

3.8.1. Syphilis

Syphilis is caused by Treponema pallidum and is a historical example of a sexually
transmitted infection that can cause psychiatric disease. The spirochete can survive in a
host for decades with gradually increasing and expanding general medical and psychiatric
symptoms. Before the introduction of penicillin, there were many patients in psychiatric
institutions diagnosed with general paresis of the insane, a form of late neurosyphilis. The
mental symptoms caused by syphilis include a wide variety of psychiatric syndromes,
including dementia and other cognitive impairments, psychosis, and mood disorders [400].
With proper diagnosis and antibiotic therapy in its early stages, syphilis is now readily
treated, thereby preventing the development of late-stage complications [401]. Noguchi and
Moore’s demonstration in 1913 of spirochetes in the brains of patients with general paresis
provided proof of a psychiatric disease associated with chronic meningoencephalitis from
a persistent smoldering syphilis infection in brain tissue [20,402]. The course of syphilis in
its various stages is shaped by the host’s immune status and immune response to spiro-
chetal infection. Indeed, much of the pathology of this disease is felt to be due to the host
inflammatory reaction to the infection rather than direct damage by spirochetes [403,404].
While late-stage neurosyphilis is, fortunately, rare, there remains a lack of consensus on
its long-term outcomes with antibiotic treatment [405–408]. An important consideration
with the initiation of antibiotic therapy is the potential occurrence of a Jarisch–Herxheimer
reaction, which is a temporary exacerbation of underlying symptoms attributed to the
antimicrobial killing of the pathogen with the release of toxic and inflammatory mediators.
Herxheimer reactions historically described in neurosyphilis patients include the exacer-
bation of psychosis, seizure development, and the development of suicidal and violent
behavior [220,409].

The history of syphilis contains a lesson in medical ethics. Penicillin was discovered
in 1928. The United States Public Health Service began the Tuskegee experiment in 1932,
which studied the natural course of syphilis in the study participants. Penicillin was found
to be effective in treating syphilis in the early 1940s, and its use expanded during the 1940s.
Penicillin treatment was withheld from the study subjects until the 1970s, with subsequent
severe syphilis-related neuropsychiatric and physical complications, as well as fatalities, in
many of the study participants [410]. Better Institutional Review Board oversight exists
over such experiments today. However, this experiment raises one of the ethical questions
that scientists struggle with: how much intervention is ethically too little or too much? At
one time, penicillin was an innovative and unproven treatment for syphilis: later, it became
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the standard of care. There are many proposed treatments for COVID-19, Lyme disease, and
other infections with physical and psychiatric consequences that may be seen as innovative
by some and unproven or disproven by others. Given the risks of long-term somatic and
mental sequelae from the inadequate treatment of some infections, the consideration of the
risk/benefit ratio is mandatory when evaluating interventions.

3.8.2. Toxoplasmosis

Toxoplasmosis is caused by Toxoplasma gondii and is a well-recognized parasitic
zoonotic disease model for a parasite that can be found in the brain associated with mental
illness. Some of these effects are possibly mediated by increased dopamine and decreased
tryptophan. Toxoplasmosis is a disease in which a microbe completes different parts of
the life cycle in different hosts. Based upon the Manipulation Hypothesis, Toxoplasma
gondii manipulates the behavior of the host in a manner that makes the host (i.e., mouse)
less fearful and more susceptible to predation by a larger mammal (i.e., the cat). This
change increases the probability of transmission from an intermediate host to a definitive
host [411]. Non-human mammals are the more common part of this microbe’s normal life
cycle. However, humans may sometimes be accidental hosts in this zoonotic cycle. When
these diseases are considered from the perspective of a zoonotic process, there may be
adaptive value for the parasite to cause the host to become more aggressive, more sexually
aggressive, more predatorial, and/or more susceptible to predation. As a zoonotic disease,
latent Toxoplasma gondii infections are prevalent in humans throughout the world. Many
infected individuals can have no or minimal symptoms, but the parasite can also result in
psychopathology in humans [412]. The resultant psychopathology includes personality
changes, mental illnesses, suicidal and homicidal behavior, schizophrenia, and auto and
workplace accidents, which, collectively, can be indirectly responsible for hundreds of
thousands of deaths [88,95,156,198–201,217,254,269,413–415].

Some studies have shown different personality changes in men vs. women. One study
found that infected men were more likely to disregard rules and were more expedient, sus-
picious, jealous, and dogmatic, while infected women were more warm-hearted, outgoing,
conscientious, persistent, and moralistic [416].

High titers of Toxoplasma gondii are associated with a greater propensity for suicidal
behavior [417]. In a sample of 20 European nations, the prevalence of the brain para-
site Toxoplasma gondii was positively associated with national suicide rates for men and
women [418]. T. gondii seropositivity is also associated with a seven-fold greater risk of
self-directed violence [419,420]. In a sample of 20 European nations, the prevalence of
Toxoplasma gondii was positively associated with higher national homicide rates, which
further amplified the research indicating a positive association of Toxoplasma gondii with
suicide rates [421].

3.8.3. COVID-19 (Coronavirus Disease 2019)

COVID-19, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2),
is a viral model of a microbe that, in some persons, plays an important role in the subse-
quent development of a mental illness. Since the identification of SARS-CoV-2 as the cause
of an outbreak of pneumonia in Wuhan, China, in December 2019 and its subsequent rapid
spread to other countries worldwide, information in this area has been rapidly evolving. In
some, COVID-19 is a mild, at times subclinical infection, while in others, it can be severe or
even fatal. Neuropsychiatric manifestations of acute infection include delirium, confusion,
emotional disturbances, and psychosis [422]. A subset of patients experience residual
sequelae after acute infection, including manifestations particularly relevant to psychiatry.
Known as post-acute sequelae of COVID-19 (PASC) and also referred to as “long COVID”,
these symptoms can resolve with the passage of time in some individuals while remain-
ing chronic in others. In patients with chronic symptoms, there are similarities to other
post-acute viral syndromes, such as Chronic Fatigue Syndrome/Myalgic Encephalomyeli-
tis [423,424]. Symptoms can occur in multiple organ systems. Persistent symptoms may
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include fatigue, post-exertional malaise, and multiple emotional and cognitive impairments
(memory impairment, attention deficits, cognitive difficulties, executive dysfunction) [422].
In addition to cognitive deficits, mental symptoms include anxiety, depression, mood
swings, bipolar/manic episodes, obsessive–compulsive disorders, posttraumatic stress,
new-onset psychosis, sleep disturbances, substance use disorders, suicidality, and symptom
constellations consistent with pediatric acute-onset neuropsychiatric syndrome (PANS; see
Section 3.8.5 for additional PANS information) [5,50,81–85,422,425–432]. One retrospective
cohort study using electronic health record data comprising 81 million patients in health-
care organizations primarily in the US showed that the risk of common neuropsychiatric
disorders (mood disorders, anxiety disorders) returned to baseline in 1–2 months, but
there remained an elevated risk of psychotic disorders, cognitive deficit, dementia, and
seizures at two years of follow-up [83]. In contrast, another study using data from the
large US Veterans Health Administration national healthcare database showed, at one year
of follow-up, an increased risk of an array of incident mental health disorders, including
anxiety, depression, sleep disorders, stress and adjustment disorders, opioid and substance
use disorders, and neurocognitive decline [426].

The proposed mechanisms for PASC [433–438] include persistent reservoirs of pathogens
or pathogen remnants (e.g., SARS-CoV-2 structural proteins such as spike protein or spike
protein fragments such as the S1 subunit); the development of autoimmunity due to molecular
mimicry between pathogen and host proteins; the reactivation of other latent pathogens;
dysbiosis from SARS-CoV-2–host-microbiome interactions; and resultant organ system or
tissue damage from the infection and associated immunopathology, including vasculopathy,
coagulopathy, and clotting issues. These potential contributors may act independently or in
combination to cause persistent symptoms.

3.8.4. Lyme Borreliosis and Associated Diseases

Lyme borreliosis is a prime example of a vector-borne (tick) zoonotic infection that
can have neuropsychiatric manifestations. An estimated 476,000 Americans yearly are
diagnosed and treated for Lyme disease, making it the most common vector-borne disease
in the US [439]. What is now commonly called Lyme disease was first described in Europe
before World War I. In 1970, Dr. Rudolph Scrimenti in Wisconsin reported the first case
in the United States, a patient with an erythema migrans rash at the site of a tick bite,
accompanied by a low-grade fever, headache, and malaise, with symptoms responding to
treatment with intramuscular penicillin [440]. The disease became more widely recognized
following an epidemic of arthritis in children and adults in Lyme, Connecticut, which was
described in multiple published reports by Dr. Allen Steere and colleagues [441–443]. Dr.
Willy Burgdorfer discovered the causative organism, the bacterium Borrelia burgdorferi [444].
Like syphilis, Borrelia burgdorferi is a complex spirochetal illness. In contrast to syphilis, it
has a much more complex genome that may give it greater adaptive capability to survive
under different conditions in different hosts, namely, cold-blooded ticks versus warm-
blooded vertebrates [445].

The nomenclature regarding Borrelia burgdorferi infection and Lyme disease is con-
fusing and needs clarification. Lyme disease or Lyme borreliosis is the disease resulting
from Borrelia burgdorferi sensu lato (Bbsl) infection. Included within Bbsl are three major
Borrelia species that cause Lyme disease: Borrelia burgdorferi (also called Borrelia burgdorferi
sensu stricto) causes the disease in the US, while Borrelia afzelii and Borrelia garinii are the
predominant species causing Lyme borreliosis in Europe and Asia.

Similar to syphilis, Lyme disease is a complex illness with multi-symptom, multisys-
temic manifestations that are commonly described as presenting in stages. Early localized
disease symptoms include a skin lesion (erythema migrans, or EM) that may or may not be
accompanied by constitutional symptoms. Early disseminated disease includes multiple
EM lesions and neurologic and cardiac manifestations. Late disseminated disease includes
joint and neurologic manifestations. Some less common organ system manifestations, such
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as ocular involvement, can represent early or late disease. The psychiatric symptoms of
Lyme disease are mostly late-stage symptoms [10].

Since many healthcare professionals are unaware of the full range of potential mani-
festations of Lyme disease, as well as the limited sensitivity of commonly used laboratory
tests and interpretation criteria, many early cases are undiagnosed and untreated. These
frequently avoidable errors can result in progression to late-stage disease with significant
neuropsychiatric symptomatology [9,10].

Lyme borreliosis/tick-borne disease is associated with almost any psychiatric syn-
drome listed in the American Psychiatric Association DSM5-TR [9,164,312] (Supplemen-
tary S1). The neuropsychiatric symptoms seen with Lyme/tick-borne disease include
developmental disorders, autism spectrum disorders, schizoaffective disorders, bipolar
disorder, depression, anxiety disorders (panic disorder, social anxiety disorder, generalized
anxiety disorder), posttraumatic stress disorder, eating disorders, sleep disorders, addiction,
suicide, violence, anhedonia, depersonalization, dissociative episodes, derealization, hallu-
cinations, intrusive symptoms, and vegetative functioning impairments. Possible cognitive
impairments that can be precipitated include dementia and impairments in attention span,
memory, processing, and executive functioning [9,10].

A large seroepidemiology survey in the Czech Republic reported Borrelia burgdorferi
seropositivity in approximately 1/3 of psychiatric patients, a rate that was 1.7-fold higher
than in matched healthy controls [446]. In the peer-reviewed medical literature, there are
currently 501 references demonstrating an association between Lyme borreliosis/tick-borne
disease and neuropsychiatric diseases and 88 demonstrating an association with dementia
(in Supplementary S1, Peer-Reviewed Evidence of Lyme Borreliosis/Tick-Borne Disease
Associated with Psychiatric Symptoms).

There are two broad postulated or demonstrated mechanisms by which late Lyme neu-
roborreliosis might lead to neuropsychiatric symptoms. First, there can be direct injury from
CNS infection, i.e., Lyme encephalitis or meningoencephalitis. This is an infection within
the parenchyma of the brain, associated in its infiltrative form with strong perivascular lym-
phoplasmacytic infiltrates, vasculitis, and microgliosis and in its atrophic form with cortical
atrophy, gliosis, and dementia [402]. Second, infections outside the central nervous system
(CNS), or perhaps a “smoldering” CNS infection, can have indirect immune and toxic ef-
fects upon the CNS through a variety of mechanisms, including molecular mimicry leading
to autoantibody formation and cellular immune responses against host neuronal structures;
altered metabolism of tryptophan resulting in the decreased production of serotonin and
the increased production of neurotoxic and neuroexcitatory kynurenine metabolites; and
consequent oxidative stress, neuronal excitotoxicity, changes in homocysteine metabolism,
and mitochondrial dysfunction [12,357,358,363,365,366,372,374,447].

In 75% of chronic Lyme disease patients with neurocognitive and/or mood dysfunc-
tion that impaired their daily living activities, single-photon emission computed tomog-
raphy brain imaging demonstrated perfusion deficits to various areas of the brain, most
notably the frontal, temporal, and parietal lobes, Patients considered to be seropositive
and those considered seronegative had similar rates and severity of perfusion defects.
Antibiotic treatment, especially agents with intracellular-penetrating activity, resulted in
the resolution or improvement of abnormalities in 70% of patients over a 1- to 2-year
period [448].

Manifestations of Lyme disease that continue or recur for an extended period (more
than 6 months) after commonly used antibiotic therapy are frequently referred to as either
chronic Lyme disease [449,450] or post-treatment Lyme disease syndrome [451]. In their
common historical use, these terms tend to connote different viewpoints on the likely etiol-
ogy of persistent symptoms. “Chronic Lyme disease” commonly connotes that persistent
symptoms could be due to an ongoing, active Borrelia infection [450]. As originally defined,
“post-treatment Lyme disease syndrome” consists of persistent or recurrent symptoms of
pain, fatigue, or cognitive issues lasting more than 6 months after treatment with a 2–4-week
course of antibiotics and is considered to be of unknown etiology, although one postulated
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view is that the symptoms could be autoimmune in nature [338,451]. Importantly, these
two explanations for persistent symptoms (ongoing, active infection vs. autoimmunity)
need not be mutually exclusive. The latest US Tick-Borne Disease Working Group 2022 Re-
port to Congress uses the term “persistent Lyme disease/chronic Lyme disease” [452] while
neutrally recognizing the existence of divergent views on the cause of persistent symptoms.

None of the three aforementioned terms address the potential presence of tick-borne
or other coinfections impacting disease presentation. Many other pathogens may be intro-
duced in the tick bite in addition to Borrelia. Evidence indicating the presence of different
Bartonella spp. DNA in various types of tick species from diverse geographic locations
has also been reported [453]. Common coinfections besides Borrelia that are particularly
relevant to neuropsychiatric symptoms include different species of Babesia [91,105,106,207]
and Bartonella [25,26,28,105,106,162,163,207,208,221–224].

While the vector competence of Ixodes scapularis ticks for Bartonella transmission to a
human host has yet to be definitively demonstrated and requires further study, Bartonella
transmission by Ixodes ricinus, the tick vector for Lyme disease in Europe, has been docu-
mented in mice [454]. Furthermore, multiple other insect vectors are known or suspected
to transmit Bartonella to humans [453]. Overall, the recognition of coinfections and their
potential role in complex cases of Lyme disease is an emerging field of research. Presently,
there are many recognized and yet-to-be-recognized tick-borne microbes that may act as
human pathogens [455–459].

Considerable confusion, controversy, and complexity surrounding Lyme disease test-
ing contribute to many missed or late diagnoses of Lyme disease that then can manifest
with significant late-stage neuropsychiatric symptomatology [9,10,460], and hence, some
clarification is in order. Most Lyme disease testing today is indirect testing that detects
IgM and/or IgG antibodies produced in response to Borrelia infection, rather than direct
testing for the organism itself. The CDC recommends two-tier serologic testing, typically
consisting of a first-tier enzyme immunoassay (EIA) that, if positive or indeterminate, is
followed by a more specific, second-tier Western blot or immunoblot assay [461]. More
recently, the CDC updated their Lyme testing recommendations to allow the use of an EIA
other than a Western immunoblot assay as an alternative second-tier test [462]. However,
for complex cases, as commonly occurs in patients with neuropsychiatric manifestations,
Western immunoblot testing may provide valuable information by demonstrating sepa-
rate highly Borrelia-specific antibodies, as well as the degree of expansion of the Lyme
antibody response, which may provide better support for a clinical diagnosis and help
delineate duration of illness [463]. The commonly used interpretation criteria for a positive
IgM or IgG immunoblot, which have been widely used since the mid-1990s [461], have
been critiqued as being overly restrictive [449,460,464,465]. Notably, the IgG immunoblot
criteria for the diagnosis of disseminated/late Lyme disease are based on a single study
that reported an overall sensitivity of 83% for their proposed criteria, with substantially
lower sensitivity for the subset of patients with neurologic disease compared to those with
arthritis (72% vs. 96%, respectively; these figures are calculable from study data presented
in their Table 4) [466]. Similarly low or even lower sensitivity of commonly used two-tiered
testing—in one study, 43% [467] and, in another study, ranging from 44 to 74% [468]—was
reported by two independent research groups, both using a CDC reference panel of serum
samples and the CDC-recommended test interpretation criteria. Several subsequent and
oft-cited studies reported high sensitivity (97–100%) of commonly used two-tier testing
and interpretation criteria in late Lyme disease [469–472], but the problematic selection
bias inherent in their study design deserves commentary. Specifically, the inclusion criteria
in these studies required late-disease patients to have lab confirmation, either as defined
in CDC surveillance criteria at the time or even as shown by positive two-tier serology.
Additionally, in the studies that specified separate numbers for arthritis vs. neurologic
disease cases, there were few cases of the latter—in one study, just 11 patients with late
neurologic disease [469], and in another study, only 2 patients [470]. Furthermore, in each of
these two studies, half or more of the few patients with neurologic disease also had current
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or previously treated arthritis. Attention to such details is warranted since, as previously
noted, the sensitivity of the commonly used IgG immunoblot interpretation criteria for dis-
seminated/late Lyme disease was substantially higher in patients with arthritis compared
to neurologic disease in the single study that forms the basis for those criteria [466].

A final point that deserves emphasis is that lab testing cannot be relied on alone to
diagnose or exclude Lyme disease and, instead, must always be considered in the context
of the whole clinical picture. Clinicians must be familiar with the full array of clinical
manifestations of Lyme borreliosis, as, ultimately, Lyme disease must be diagnosed clinically
on the basis of clinical history and exam findings, with lab testing regarded as supportive
or not of the clinical diagnosis [473,474]. The possibility of false-negative serologic tests
in early disease is well recognized, as it takes time for the immune system to respond to
infection with Borrelia-specific antibody production. In late Lyme disease, false-negative
serologies can also occur due to a variety of reasons [475,476]. Indeed, seronegativity is well
documented in patients with late Lyme borreliosis, including PCR- or culture-confirmed
disease [477–480]. Conversely, false positives can be seen due to cross-reactivity in patients
with other spirochetal diseases or clinical conditions, such as autoimmune diseases [475].
Additionally, in some Lyme-endemic areas in the US or Europe, background seropositivity
rates as high as 11–20% have been reported in healthy blood donors or general outpatients
not being seen for tick-borne disease testing [481–485]. In summary, laboratory testing
alone cannot be the sole basis for determining whether any infection did or did not play a
role in the development of any particular psychiatric symptom or syndrome. Instead, there
must be reliance on the total clinical assessment [7–10].

3.8.5. Group A Streptococcal Infections, PANDAS, and PANS

An area of active investigation for more than two decades that helps demonstrate
a connection between microbes and mental illness is the field of pediatric autoimmune
neuropsychiatric disorders associated with streptococcal infections (PANDAS). The illness
follows a group A streptococcal (GAS) infection, such as pharyngitis, scarlet fever, or an
anal streptococcal infection. Subsequently, the individual experiences a sudden onset of
obsessive–compulsive symptoms, a tic disorder, or both [486]. Accompanying the psychi-
atric symptoms are new-onset neurologic abnormalities, such as physical hyperactivity or
unusual, jerky involuntary movements. In addition, there are a variety of associated symp-
toms, including mood changes, increased irritability, sleep difficulties, separation anxiety
symptoms, increased day or nighttime urination, joint pains, and motor skill changes, such
as a decrement in handwriting [487].

The proposed etiological mechanisms for PANDAS include molecular mimicry and
the development of autoimmunity. These processes play an important role in the develop-
ment of cardiac valvular disease and Sydenham’s chorea, which can occur in individuals
suffering from post-Streptococcal Rheumatic Fever [488]. In PANDAS, the proposed mech-
anism of causation involves antibodies that react to components of the strep bacteria and
subsequently cross-react with similar molecules located in the child’s basal ganglia [489].
Experiments using mouse models have found that group A streptococcus infection in-
duces a strong Th17 immune response in the nasal-associated lymphoid tissue (NALT), the
murine equivalent of human palatine tonsils [490]. GAS-specific Th17 cells have also been
shown to exist in the tonsils of people naturally exposed to group A strep [490]. In a mouse
model, multiple GAS challenges promote the migration and persistence of GAS-specific
Th17 cells to the brain, leading to blood–brain barrier breakdown and autoantibody access
to the CNS [490].

Th17 memory cells help control extracellular bacterial infections and fungi at mucosal
surfaces by recruiting and activating myeloid cells (neutrophils) [491] but also play a role
in the generation of the immunopathology characteristic of autoimmune conditions such
as rheumatoid arthritis and multiple sclerosis [492,493]. In a murine model of PANDAS,
evidence supports the action of Th17 cells releasing the cytokine IL-17A, which is thought
to play an important role in the entry of immune system cells into the CNS [494]. There, it
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leads to the disruption of healthy brain cells, eventually resulting in the development of
neuropsychiatric symptoms. One hypothesis is that the olfactory bulb’s proximity to the
nasal mucosa makes it a susceptible target for insult and infection of the brain [495]. Studies
in the literature support the use of the olfactory route by many viruses and bacteria to create
an infection within the brain [496]. However, in the case of PANDAS, there is no evidence
of streptococcal entry across the blood–brain barrier and into the brain [490]. Recent work
reported in preprint form by Agalliu and colleagues demonstrates that two Th17 effector
cytokines, IL-17A and GM-CSF, differentially promote blood–brain barrier dysfunction and
the microbial expression of interferon-response and chemokine genes in a murine model of
intranasal GAS infections [497]. The brain microglia release a variety of chemokines that
might act as potential biomarkers of the illness. Collectively, the evidence supports the idea
that PANDAS is a form of infection-induced immune-mediated encephalitis.

Since the original description of PANDAS, it has subsequently become recognized
as part of a broader category called pediatric acute-onset neuropsychiatric syndrome
(PANS) [243,498]. Unlike PANDAS, the name PANS recognizes that the neuropsychiatric
and other manifestations of this syndrome can be triggered by not just streptococcal in-
fections but also a variety of other infections [243,499] (e.g., Mycoplasma [263], Borrelia
(Lyme disease) [500], Bartonella [162], SARS-CoV-2 [82,425,437]), as well as, potentially,
non-infectious triggers, such as environmental exposure to toxins or other inducers of
inflammatory reactions [498,501]. As originally defined, the primary symptoms of PANS
are the sudden onset of obsessive–compulsive symptoms or restricted eating behaviors.
Additional symptoms of PANDAS and PANS include a variety of neuropsychiatric as well
as somatic symptoms, including depression, anxiety, emotional lability, irritability, aggres-
sion, behavioral regression, ADHD-like symptoms, cognitive changes, sleep disturbances,
and urinary frequency or enuresis [243,498,502].

4. Discussion

The microbial impact upon human mental functioning is more extensive than generally
appreciated. Historically, there have been, and continue to be, many models to attempt to
explain the causes of and contributors to mental illnesses. The increasing recognition that
microbes may contribute to mental illness is expanding as clinical observations and newer
technologies provide greater evidence.

A considerable amount of the literature recognizes that psychiatric conditions may be
associated with infectious contributors. This is demonstrated in Tables 1 and 2. There are
multiple pathophysiological mechanisms explaining this association. The review of the
five infection-associated diseases further supports the association between microbes and
mental illness.

As a result, clinicians need to consider the possibility of infectious diseases in for-
mulating a pathophysiological explanation and a differential diagnosis. Considering the
complexity and interactive nature of the pathogen and host in illness, treatments including
anti-infective and/or immune interventions become potential treatment options. This
consideration may be of particular significance with treatment-resistant psychiatric illness.

It is important to look at the five examples of microbes associated with mental ill-
nesses discussed in this article from a historical perspective. The effective treatment of
neurosyphilis was not fully implemented for many years after the discovery of penicillin.
The other four infection-associated diseases are surrounded by controversy. Will current
technology facilitate more effective progress toward understanding and treating these ill-
nesses?

There are many obstacles preventing forward progress in recognizing the association
between microbes and mental illness. These include difficulties appreciating the potential
role of infections in chronic illness, failure to recognize complex disease models, the
difficulty developing disease models when there are multiple variables with susceptibility
and infection, pathophysiology and manifestations, failure to appreciate the role of chronic
relapsing infections and complex interactive infections with psychiatric illness, a silo
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mentality, paradigm blindness, investments in outdated belief systems, current clinical
assessment limitations, laboratory limitations, the limitations of antimicrobial and other
treatments, educational limitations, and healthcare system limitations.

Potential solutions include the following: (1) expanded research into the association
between microbes and mental illness; (2) a reexamination of existing paradigms to identify
and correct gaps and inconsistencies; (3) improved multidisciplinary collaboration; and
(4) expanded clinician and public education.

Future Directions

Investigation and collaboration among multiple specialists are needed to further
clarify and expand all of the topics that have been reviewed in this article. Table 1 can
be expanded, and Table 2 can be expanded to include additional diagnostic categories.
Additional research and education addressing the association between microbes and mental
illness are needed. In addition, the education of healthcare providers, with curricula
addressing microbes and mental illness in medical schools, residency programs, and allied
healthcare programs, and multidisciplinary cooperation, especially between psychiatrists,
psychoimmunologists, and infectious disease specialists, will help advance progress toward
a better understanding of the etiology of mental illnesses.

5. Conclusions

The findings of this review support the concept that infectious diseases may have an
important role in psychiatric diagnosis and treatment. Indirect mechanisms of infection,
such as inflammation, neuroinflammation, autoimmunity, and other neurophysiological
changes, have been implicated in the development and/or progression of some mental
illnesses. The persistence of these processes may result in chronic effects on brain structure
and function. A combination of these indirect actions, with direct pathophysiologic effects
from infectious agents, has the potential to result in a broad spectrum of mental symp-
toms and illnesses. Further investigation into the association between infectious/immune
processes and mental disorders may lead to greater use of antimicrobial and immune-
modulating agents in the treatment of psychiatric conditions. This may prevent and reduce
mental illness morbidity, disability, and mortality.
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Klimek, T.; Witkiewicz, W.; et al. Correlation between COVID-19 severity and previous exposure of patients to Borrelia spp. Sci.

Rep. 2022, 12, 15944. [CrossRef] [PubMed]
350. Goswami, A.; Wendt, F.R.; Pathak, G.A.; Tylee, D.S.; De Angelis, F.; De Lillo, A.; Polimanti, R. Role of microbes in the pathogenesis

of neuropsychiatric disorders. Front. Neuroendocrinol. 2021, 62, 100917. [CrossRef]
351. Bull, M.J.; Plummer, N.T. Part 1: The Human Gut Microbiome in Health and Disease. Integr. Med. 2014, 13, 17–22.
352. Imai, D.M.; Feng, S.; Hodzic, E.; Barthold, S.W. Dynamics of connective-tissue localization during chronic Borrelia burgdorferi

infection. Lab. Investig. 2013, 93, 900–910. [CrossRef] [PubMed]
353. Bockenstedt, L.K.; Gonzalez, D.G.; Haberman, A.M.; Belperron, A.A. Spirochete antigens persist near cartilage after murine Lyme

borreliosis therapy. J. Clin. Investig. 2012, 122, 2652–2660. [CrossRef] [PubMed]

https://doi.org/10.2190/REPY-D2WD-07NM-MBRT
https://www.ncbi.nlm.nih.gov/pubmed/6671858
https://doi.org/10.1128/mBio.00598-13
https://www.ncbi.nlm.nih.gov/pubmed/24003179
https://doi.org/10.1177/1178633617732296
https://www.ncbi.nlm.nih.gov/pubmed/29317829
https://www.contagionlive.com/view/did-infections-caused-by-world-war-i-contribute-to-causing-world-war-ii
https://www.contagionlive.com/view/did-infections-caused-by-world-war-i-contribute-to-causing-world-war-ii
https://doi.org/10.1371/journal.pone.0266232
https://www.ncbi.nlm.nih.gov/pubmed/35381027
https://doi.org/10.1016/j.micinf.2003.11.014
https://www.ncbi.nlm.nih.gov/pubmed/15065567
https://doi.org/10.1128/IAI.00890-16
https://www.ncbi.nlm.nih.gov/pubmed/27799330
https://doi.org/10.2147/IJGM.S44114
https://doi.org/10.1371/journal.ppat.1004976
https://doi.org/10.3390/brainsci11060789
https://doi.org/10.1016/j.tim.2007.06.003
https://doi.org/10.1086/508667
https://doi.org/10.1038/s41435-022-00192-6
https://neuroimmune.org/wp-content/uploads/2022/05/yolken.pdf
https://doi.org/10.1128/mBio.02055-19
https://www.ncbi.nlm.nih.gov/pubmed/31506314
https://doi.org/10.2174/1874205X01206010158
https://www.ncbi.nlm.nih.gov/pubmed/23400696
https://doi.org/10.4236/ojmm.2015.53018
https://doi.org/10.1080/10573320802091809
https://doi.org/10.1128/CVI.00308-07
https://www.ncbi.nlm.nih.gov/pubmed/17898182
https://doi.org/10.1111/j.1365-2249.2005.02993.x
https://www.ncbi.nlm.nih.gov/pubmed/16412057
https://doi.org/10.3389/fmicb.2019.01596
https://doi.org/10.1038/s41598-022-20202-x
https://www.ncbi.nlm.nih.gov/pubmed/36153350
https://doi.org/10.1016/j.yfrne.2021.100917
https://doi.org/10.1038/labinvest.2013.81
https://www.ncbi.nlm.nih.gov/pubmed/23797360
https://doi.org/10.1172/JCI58813
https://www.ncbi.nlm.nih.gov/pubmed/22728937


Healthcare 2024, 12, 83 38 of 43

354. Eisenstein, M. The skin microbiome and its relationship with the human body explained. Nature 2020, 588, S210–S211. [CrossRef]
[PubMed]

355. Scholthof, K.B. The disease triangle: Pathogens, the environment and society. Nat. Rev. Microbiol. 2007, 5, 152–156. [CrossRef]
[PubMed]

356. Dorfman, K. The Total Load Theory: Why So Many Children Have Developmental Problems. Available online: https://
epidemicanswers.org/total-load-theory-why-so-many-children-have-developmental-problems/ (accessed on 18 December 2022).

357. Bransfield, R.C. Relationship of Inflammation and Autoimmunity to Psychiatric Sequelae in Lyme Disease. Psychiatr. Ann. 2012,
42, 337–341. [CrossRef]

358. Fallon, B.A.; Levin, E.S.; Schweitzer, P.J.; Hardesty, D. Inflammation and central nervous system Lyme disease. Neurobiol. Dis.

2010, 37, 534–541. [CrossRef] [PubMed]
359. Kawasaki, T.; Kawai, T. Toll-like receptor signaling pathways. Front. Immunol. 2014, 5, 461. [CrossRef]
360. Pizzino, G.; Irrera, N.; Cucinotta, M.; Pallio, G.; Mannino, F.; Arcoraci, V.; Squadrito, F.; Altavilla, D.; Bitto, A. Oxidative Stress:

Harms and Benefits for Human Health. Oxid. Med. Cell Longev. 2017, 2017, 8416763. [CrossRef]
361. Burke, H.M.; Davis, M.C.; Otte, C.; Mohr, D.C. Depression and cortisol responses to psychological stress: A meta-analysis.

Psychoneuroendocrinology 2005, 30, 846–856. [CrossRef]
362. Somani, A.; Singh, A.K.; Gupta, B.; Nagarkoti, S.; Dalal, P.K.; Dikshit, M. Oxidative and Nitrosative Stress in Major Depressive

Disorder: A Case Control Study. Brain Sci. 2022, 12, 144. [CrossRef] [PubMed]
363. Halperin, J.J.; Heyes, M.P. Neuroactive kynurenines in Lyme borreliosis. Neurology 1992, 42, 43–50. [CrossRef] [PubMed]
364. Gasse, T.; Murr, C.; Meyersbach, P.; Schmutzhard, E.; Wachter, H.; Fuchs, D. Neopterin production and tryptophan degradation in

acute Lyme neuroborreliosis versus late Lyme encephalopathy. Eur. J. Clin. Chem. Clin. Biochem. 1994, 32, 685–689. [CrossRef]
[PubMed]

365. Gasse, T.; Widner, B.; Baier-Bitterlich, G.; Sperner-Unterweger, B.; Leblhuber, F.; Wachter, H.; Fuchs, D. Abnormal tryptophan
metabolism, neurologic/psychiatric disturbances and its relationship to immune activation. In Neurochemical Markers of Degenera-

tive Nervous Diseases and Drug Addiction, Progress in HPLC-HPCE, 7th ed.; Qureshi, G.A., Parvez, H., Caudy, P., Parvez, S., Eds.;
Ridderprint BV: Ridderkerk, The Netherlands, 1998.

366. Wirleitner, B.; Neurauter, G.; Schröcksnadel, K.; Frick, B.; Fuchs, D. Interferon-gamma-induced conversion of tryptophan:
Immunologic and neuropsychiatric aspects. Curr. Med. Chem. 2003, 10, 1581–1591. [CrossRef] [PubMed]

367. Myint, A.M. Kynurenines: From the perspective of major psychiatric disorders. FEBS J. 2012, 279, 1375–1385. [CrossRef] [PubMed]
368. Iliff, J.J.; Wang, M.; Liao, Y.; Plogg, B.A.; Peng, W.; Gundersen, G.A.; Benveniste, H.; Vates, G.E.; Deane, R.; Goldman, S.A.; et al.

A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including
amyloid β. Sci. Transl. Med. 2012, 4, 147ra111. [CrossRef] [PubMed]

369. Nedergaard, M. Neuroscience. Garbage truck of the brain. Science 2013, 340, 1529–1530. [CrossRef]
370. Ibarra-Coronado, E.G.; Pantaleón-Martínez, A.M.; Velazquéz-Moctezuma, J.; Prospéro-García, O.; Méndez-Díaz, M.; Pérez-Tapia,

M.; Pavón, L.; Morales-Montor, J. The Bidirectional Relationship between Sleep and Immunity against Infections. J. Immunol. Res.

2015, 2015, 678164. [CrossRef]
371. Xie, L.; Kang, H.; Xu, Q.; Chen, M.J.; Liao, Y.; Thiyagarajan, M.; O’Donnell, J.; Christensen, D.J.; Nicholson, C.; Iliff, J.J.; et al. Sleep

drives metabolite clearance from the adult brain. Science 2013, 342, 373–377. [CrossRef]
372. Hemmer, B.; Gran, B.; Zhao, Y.; Marques, A.; Pascal, J.; Tzou, A.; Kondo, T.; Cortese, I.; Bielekova, B.; Straus, S.E.; et al.

Identification of candidate T-cell epitopes and molecular mimics in chronic Lyme disease. Nat. Med. 1999, 5, 1375–1382. [CrossRef]
[PubMed]

373. Soulas, P.; Woods, A.; Jaulhac, B.; Knapp, A.M.; Pasquali, J.L.; Martin, T.; Korganow, A.S. Autoantigen, innate immunity, and T
cells cooperate to break B cell tolerance during bacterial infection. J. Clin. Investig. 2005, 115, 2257–2267. [CrossRef] [PubMed]

374. Sigal, L.H. Immunologic mechanisms in Lyme neuroborreliosis: The potential role of autoimmunity and molecular mimicry.
Semin. Neurol. 1997, 17, 63–68. [CrossRef] [PubMed]

375. Kreye, J.; Reincke, S.M.; Prüss, H. Do cross-reactive antibodies cause neuropathology in COVID-19? Nat. Rev. Immunol. 2020, 20,
645–646. [CrossRef] [PubMed]

376. Sherbet, S.G.S. Bacterial Infections and the Pathogenesis of Autoimmune Conditions. Br. J. Med. Pract. 2009, 2, 6–13.
377. Tausk, F.; Elenkov, I.; Moynihan, J. Psychoneuroimmunology. Dermatol. Ther. 2008, 21, 22–31. [CrossRef] [PubMed]
378. Pan, W.; Stone, K.P.; Hsuchou, H.; Manda, V.K.; Zhang, Y.; Kastin, A.J. Cytokine signaling modulates blood-brain barrier function.

Curr. Pharm. Des. 2011, 17, 3729–3740. [CrossRef] [PubMed]
379. Klein, H.C.; de Witte, L.; Bransfield, R.; De Deyn, P.P. PET and SPECT in Neurology; Dierckx, R.A.J.O., Otte, A., de Vries, E.F.J., van

Waarde, A., Leenders, K.L., Eds.; Springer: Cham, Switzerland, 2020.
380. Wichers, M.C.; Koek, G.H.; Robaeys, G.; Verkerk, R.; Scharpé, S.; Maes, M. IDO and interferon-alpha-induced depressive

symptoms: A shift in hypothesis from tryptophan depletion to neurotoxicity. Mol. Psychiatry 2005, 10, 538–544. [CrossRef]
381. Saikarthik, J.; Saraswathi, I.; Alarifi, A.; Al-Atram, A.A.; Mickeymaray, S.; Paramasivam, A.; Shaikh, S.; Jeraud, M.; Alothaim, A.S.

Role of neuroinflammation mediated potential alterations in adult neurogenesis as a factor for neuropsychiatric symptoms in
Post-Acute COVID-19 syndrome-A narrative review. PeerJ 2022, 10, e14227. [CrossRef]

382. Casey, B.J.; Heller, A.S.; Gee, D.G.; Cohen, A.O. Development of the emotional brain. Neurosci. Lett. 2019, 693, 29–34. [CrossRef]

https://doi.org/10.1038/d41586-020-03524-6
https://www.ncbi.nlm.nih.gov/pubmed/33328672
https://doi.org/10.1038/nrmicro1596
https://www.ncbi.nlm.nih.gov/pubmed/17191075
https://epidemicanswers.org/total-load-theory-why-so-many-children-have-developmental-problems/
https://epidemicanswers.org/total-load-theory-why-so-many-children-have-developmental-problems/
https://doi.org/10.3928/00485713-20120906-07
https://doi.org/10.1016/j.nbd.2009.11.016
https://www.ncbi.nlm.nih.gov/pubmed/19944760
https://doi.org/10.3389/fimmu.2014.00461
https://doi.org/10.1155/2017/8416763
https://doi.org/10.1016/j.psyneuen.2005.02.010
https://doi.org/10.3390/brainsci12020144
https://www.ncbi.nlm.nih.gov/pubmed/35203908
https://doi.org/10.1212/WNL.42.1.43
https://www.ncbi.nlm.nih.gov/pubmed/1531156
https://doi.org/10.1515/cclm.1994.32.9.685
https://www.ncbi.nlm.nih.gov/pubmed/7865624
https://doi.org/10.2174/0929867033457179
https://www.ncbi.nlm.nih.gov/pubmed/12871129
https://doi.org/10.1111/j.1742-4658.2012.08551.x
https://www.ncbi.nlm.nih.gov/pubmed/22404766
https://doi.org/10.1126/scitranslmed.3003748
https://www.ncbi.nlm.nih.gov/pubmed/22896675
https://doi.org/10.1126/science.1240514
https://doi.org/10.1155/2015/678164
https://doi.org/10.1126/science.1241224
https://doi.org/10.1038/70946
https://www.ncbi.nlm.nih.gov/pubmed/10581079
https://doi.org/10.1172/JCI24646
https://www.ncbi.nlm.nih.gov/pubmed/16041408
https://doi.org/10.1055/s-2008-1040915
https://www.ncbi.nlm.nih.gov/pubmed/9166962
https://doi.org/10.1038/s41577-020-00458-y
https://www.ncbi.nlm.nih.gov/pubmed/33024283
https://doi.org/10.1111/j.1529-8019.2008.00166.x
https://www.ncbi.nlm.nih.gov/pubmed/18318882
https://doi.org/10.2174/138161211798220918
https://www.ncbi.nlm.nih.gov/pubmed/21834767
https://doi.org/10.1038/sj.mp.4001600
https://doi.org/10.7717/peerj.14227
https://doi.org/10.1016/j.neulet.2017.11.055


Healthcare 2024, 12, 83 39 of 43

383. Cattarinussi, G.; Miola, A.; Trevisan, N.; Valeggia, S.; Tramarin, E.; Mucignat, C.; Morra, F.; Minerva, M.; Librizzi, G.; Bordin, A.;
et al. Altered brain regional homogeneity is associated with depressive symptoms in COVID-19. J. Affect. Disord. 2022, 313, 36–42.
[CrossRef] [PubMed]

384. Zhuang, X.; Zhan, B.; Jia, Y.; Li, C.; Wu, N.; Zhao, M.; Chen, N.; Guo, Y.; Du, Y.; Zhang, Y.; et al. IL-33 in the basolateral amygdala
integrates neuroinflammation into anxiogenic circuits via modulating BDNF expression. Brain Behav. Immun. 2022, 102, 98–109.
[CrossRef] [PubMed]

385. Prell, T.; Dirks, M.; Arvanitis, D.; Braun, D.; Peschel, T.; Worthmann, H.; Schuppner, R.; Raab, P.; Grosskreutz, J.; Weissenborn, K.
Cerebral patterns of neuropsychological disturbances in hepatitis C patients. J. Neurovirol. 2019, 25, 229–238. [CrossRef] [PubMed]

386. Denton, A.R.; Samaranayake, S.A.; Kirchner, K.N.; Roscoe, R.F., Jr.; Berger, S.N.; Harrod, S.B.; Mactutus, C.F.; Hashemi, P.; Booze,
R.M. Selective monoaminergic and histaminergic circuit dysregulation following long-term HIV-1 protein exposure. J. Neurovirol.

2019, 25, 540–550. [CrossRef] [PubMed]
387. Kamat, R.; Brown, G.G.; Bolden, K.; Fennema-Notestein, C.; Archibald, S.; Marcotte, T.D.; Letendre, S.L.; Ellis, R.J.; Woods, S.P.;

Grant, I.; et al. Apathy is associated with white matter abnormalities in anterior, medial brain regions in persons with HIV
infection. J. Clin. Exp. Neuropsychol. 2014, 36, 854–866. [CrossRef] [PubMed]

388. Green, M.J.; Watkeys, O.J.; Whitten, T.; Thomas, C.; Karluki, M.; Dean, K.; Laurens, K.R.; Harris, F.; Carr, V.J. Increased incidence
of childhood mental disorders following exposure to early life infection. Brain Behav. Immun. 2021, 97, 376–382. [CrossRef]
[PubMed]

389. Petersen, L.; Gasse, C.; Mortensen, P.B.; Dalsgaard, S.; Yolken, R.H.; Mors, O.; Benros, M.E. A Nationwide Study in Denmark of
the Association Between Treated Infections and the Subsequent Risk of Treated Mental Disorders in Children and Adolescents.
JAMA Psychiatry 2019, 76, 271–279. [CrossRef]

390. Boyd, C.M.; Darer, J.; Boult, C.; Fried, L.P.; Boult, L.; Wu, A.W. Clinical practice guidelines and quality of care for older patients
with multiple comorbid diseases: Implications for pay for performance. JAMA 2005, 294, 716–724. [CrossRef]

391. Bransfield, R.C.; Friedman, K.J. Differentiating Psychosomatic, Somatopsychic, Multisystem Illnesses, and Medical Uncertainty.
Healthcare 2019, 7, 114. [CrossRef]

392. Citera, M.; Freeman, P.R.; Horowitz, R.I. Empirical validation of the Horowitz Multiple Systemic Infectious Disease Syndrome
Questionnaire for suspected Lyme disease. Int. J. Gen. Med. 2017, 10, 249–273. [CrossRef]

393. Shroff, G.; Hopf-Seidel, P. A Novel Scoring System Approach to Assess Patients with Lyme Disease (Nutech Functional Score).
J. Glob. Infect. Dis. 2018, 10, 3–6. [CrossRef]

394. Fallon, B.A.; Zubcevik, N.; Bennett, C.; Doshi, S.; Rebman, A.W.; Kishon, R.; Moeller, J.R.; Octavien, N.R.; Aucott, J.N. The General
Symptom Questionnaire-30 (GSQ-30): A Brief Measure of Multi-System Symptom Burden in Lyme Disease. Front. Med. 2019, 6,
283. [CrossRef] [PubMed]

395. Centers for Disease Control and Prevention. National Healthcare Safety Network: Surveillance vs. Clinical. Frequently Asked
Questions (FAQs) Frequently Asked Questions (FAQs). Available online: https://www.cdc.gov/nhsn/faqs/faqs-miscellaneous.
html (accessed on 7 June 2023).

396. Weinstein, E.R.; Rebman, A.W.; Aucott, J.N.; Johnson-Greene, D.; Bechtold, K.T. Sleep quality in well-defined Lyme disease: A
clinical cohort study in Maryland. Sleep 2018, 41, zsy035. [CrossRef] [PubMed]

397. Modolfsy, H. Sleep and the immune system. Int. J. Immunopharmacol. 1995, 17, 649–654.
398. Kelley, K.W. The role of growth hormone in modulation of the immune response. Ann. N. Y. Acad. Sci. 1990, 594, 95–103.

[CrossRef] [PubMed]
399. Bransfield, R.C. Building Bridges between Infectious Disease Physicians and Psychiatrists. Contagion Live. 2017. Available online:

https://www.contagionlive.com/view/building-bridges-between-infectious-disease-physicians-and-psychiatrists (accessed on
22 August 2022).

400. Hutto, B. Syphilis in Clinical Psychiatry: A Review. Psychosomatics 2001, 42, 453–460. [CrossRef] [PubMed]
401. WHO Guidelines for the Treatment of Treponema pallidum (Syphilis). World Health Organization: Geneva, Switzerland, 2016; 4,

Recommendations for the Treatment of Syphilis. Available online: https://www.ncbi.nlm.nih.gov/books/NBK384905/ (accessed
on 26 August 2022).

402. Miklossy, J. Chronic or late lyme neuroborreliosis: Analysis of evidence compared to chronic or late neurosyphilis. Open Neurol. J.

2012, 6, 146–157. [CrossRef] [PubMed]
403. Norris, S.J. Polypeptides of Treponema pallidum: Progress toward understanding their structural, functional, and immunologic

roles. Treponema Pallidum Polypeptide Research Group. Microbiol. Rev. 1993, 57, 750–779, Erratum in Microbiol. Rev. 1994, 58, 291.
[CrossRef]

404. Carlson, J.A.; Dabiri, G.; Cribier, B.; Sell, S. The immunopathobiology of syphilis: The manifestations and course of syphilis are
determined by the level of delayed-type hypersensitivity. Am. J. Dermatopathol. 2011, 33, 433–460. [CrossRef]

405. Dawson-Butterworth, K.; Heathcote, P.R. Review of hospitalized cases of general paralysis of the insane. Br. J. Vener. Dis. 1970, 46,
295–302. [CrossRef]

406. Yogeswari, L.; Chacko, C.W. Persistence of T. pallidum and its significance in penicillin-treated seropositive late syphilis. Br. J.

Vener. Dis. 1971, 47, 339–347. [CrossRef]
407. Whiteside, C.M. Persistence of neurosyphilis despite multiple treatment regimens. Am. J. Med. 1989, 87, 225–227. [CrossRef]

[PubMed]

https://doi.org/10.1016/j.jad.2022.06.061
https://www.ncbi.nlm.nih.gov/pubmed/35764231
https://doi.org/10.1016/j.bbi.2022.02.019
https://www.ncbi.nlm.nih.gov/pubmed/35181439
https://doi.org/10.1007/s13365-018-0709-2
https://www.ncbi.nlm.nih.gov/pubmed/30610739
https://doi.org/10.1007/s13365-019-00754-x
https://www.ncbi.nlm.nih.gov/pubmed/31102184
https://doi.org/10.1080/13803395.2014.950636
https://www.ncbi.nlm.nih.gov/pubmed/25275424
https://doi.org/10.1016/j.bbi.2021.08.009
https://www.ncbi.nlm.nih.gov/pubmed/34390804
https://doi.org/10.1001/jamapsychiatry.2018.3428
https://doi.org/10.1001/jama.294.6.716
https://doi.org/10.3390/healthcare7040114
https://doi.org/10.2147/IJGM.S140224
https://doi.org/10.4103/jgid.jgid_11_17
https://doi.org/10.3389/fmed.2019.00283
https://www.ncbi.nlm.nih.gov/pubmed/31867334
https://www.cdc.gov/nhsn/faqs/faqs-miscellaneous.html
https://www.cdc.gov/nhsn/faqs/faqs-miscellaneous.html
https://doi.org/10.1093/sleep/zsy035
https://www.ncbi.nlm.nih.gov/pubmed/29452400
https://doi.org/10.1111/j.1749-6632.1990.tb40471.x
https://www.ncbi.nlm.nih.gov/pubmed/2198842
https://www.contagionlive.com/view/building-bridges-between-infectious-disease-physicians-and-psychiatrists
https://doi.org/10.1176/appi.psy.42.6.453
https://www.ncbi.nlm.nih.gov/pubmed/11815679
https://www.ncbi.nlm.nih.gov/books/NBK384905/
https://doi.org/10.2174/1874205X01206010146
https://www.ncbi.nlm.nih.gov/pubmed/23346260
https://doi.org/10.1128/mr.57.3.750-779.1993
https://doi.org/10.1097/DAD.0b013e3181e8b587
https://doi.org/10.1136/sti.46.4.295
https://doi.org/10.1136/sti.47.5.339
https://doi.org/10.1016/S0002-9343(89)80703-X
https://www.ncbi.nlm.nih.gov/pubmed/2757060


Healthcare 2024, 12, 83 40 of 43

408. Moulton, C.D.; Koychev, I. The effect of penicillin therapy on cognitive outcomes in neurosyphilis: A systematic review of the
literature. Gen. Hosp. Psychiatry 2015, 37, 49–52. [CrossRef] [PubMed]

409. Stokes, J.H.; Beerman, H.; Ingraham, N.R. Modern Clinical Syphilology: Diagnosis, Treatment, Case Study, 3rd ed.; Saunders:
Philadelphia, PA, USA, 1944; 1025p.

410. Tuskegee Experiment: The Infamous Syphilis Study. Available online: https://www.history.com/news/the-infamous-40-year-
tuskegee-study (accessed on 26 August 2022).

411. Boillat, M.; Hammoudi, P.M.; Dogga, S.K.; Pagès, S.; Goubran, M.; Rodriguez, I.; Soldati-Favre, D. Neuroinflammation-Associated
Aspecific Manipulation of Mouse Predator Fear by Toxoplasma gondii. Cell Rep. 2020, 30, 320–334. [CrossRef] [PubMed]

412. Flegr, J. How and why Toxoplasma makes us crazy. Trends Parasitol. 2013, 29, 156–163. [CrossRef] [PubMed]
413. Flegr, J.; Hrdy, I. Influence of chronic toxoplasmosis on some human personality factors. Folia Parasitol. 1994, 42, 122–126.
414. Flegr, J.; Zitkova, S.; Kodym, P.; Frynta, D. Induction of changes in human behavious by the parasitic protozoan Toxoplasma

gondii. Parasitology 1996, 113 Pt 1, 49–54. [CrossRef]
415. Piekarski, G. Behavioral alterations caused by parasitic infection in case of latent toxoplasma infection. Zentralbl. Bakteriol.

Mikrobiol. Hyg. A Med. Mikrobiol. Infekt. Parasitol. 1981, 250, 403–406. [CrossRef] [PubMed]
416. Flegr, J. Effects of toxoplasma on human behavior. Schizophr. Bull. 2007, 33, 757–760. [CrossRef] [PubMed]
417. Coryell, W.; Yolken, R.; Butcher, B.; Burns, T.; Dindo, L.; Schlechte, J.; Calarge, C. Toxoplasmosis Titers and past Suicide Attempts

Among Older Adolescents Initiating SSRI Treatment. Arch. Suicide Res. 2016, 20, 605–613. [CrossRef]
418. Lester, D. Brain parasites and suicide. Psychol. Rep. 2010, 107, 424. [CrossRef]
419. Zhang, Y.; Träskman-Bendz, L.; Janelidze, S.; Langenberg, P.; Saleh, A.; Constantine, N.; Okusaga, O.; Bay-Richter, C.; Brundin, L.;

Postolache, T.T. Toxoplasma gondii immunoglobulin G antibodies and nonfatal suicidal self-directed violence. J. Clin. Psychiatry

2012, 73, 1069–1076. [CrossRef] [PubMed]
420. Bak, J.; Shim, S.H.; Kwon, Y.J.; Lee, H.Y.; Kim, J.S.; Yoon, H.; Lee, Y.J. The Association between Suicide Attempts and Toxoplasma

gondii Infection. Clin. Psychopharmacol. Neurosci. 2018, 16, 95–102. [CrossRef] [PubMed]
421. Lester, D. Toxoplasma gondii and homicide. Psychol. Rep. 2012, 111, 196–197. [CrossRef] [PubMed]
422. Dix, E.; Roy, K. COVID-19: Brain Effects. Psychiatr. Clin. N. Am. 2022, 45, 625–637. [CrossRef] [PubMed]
423. Espinosa Rodríguez, P.; Martínez Aguilar, A.; Ripoll Muñoz, M.P.; Rodríguez Navarro, M.Á. COVID persistente: ¿es en realidad

una encefalomielitis miálgica? Revisión bibliográfica y consideraciones [Long COVID: Is it really myalgic encephalomyelitis?
Bibliographic review and considerations]. Semergen 2022, 48, 63–69. (In Spanish) [CrossRef] [PubMed]

424. Bansal, R.; Gubbi, S.; Koch, C.A. COVID-19 and chronic fatigue syndrome: An endocrine perspective. J. Clin. Transl. Endocrinol.

2022, 27, 100284. [CrossRef] [PubMed]
425. Berloffa, S.; Salvati, A.; Pantalone, G.; Falcioni, L.; Rizzi, M.M.; Naldini, F.; Masi, G.; Gagliano, A. Steroid treatment response to

post SARS-CoV-2 PANS symptoms: Case series. Front. Neurol. 2023, 14, 1085948, Erratum in Front. Neurol. 2023, 14, 1178013.
[CrossRef] [PubMed]

426. Xie, Y.; Xu, E.; Al-Aly, Z. Risks of mental health outcomes in people with covid-19: Cohort study. BMJ 2022, 376, e068993.
[CrossRef]

427. Schou, T.M.; Joca, S.; Wegener, G.; Bay-Richter, C. Psychiatric and neuropsychiatric sequelae of COVID-19—A systematic review.
Brain Behav. Immun. 2021, 97, 328–348. [CrossRef]

428. Pandya, D.; Johnson, T.P. Chronic and delayed neurological manifestations of persistent infections. Curr. Opin. Neurol. 2023, 36,
198–206. [CrossRef] [PubMed]

429. Walitt, B.; Johnson, T.P. The pathogenesis of neurologic symptoms of the postacute sequelae of severe acute respiratory syndrome
coronavirus 2 infection. Curr. Opin. Neurol. 2022, 35, 384–391. [CrossRef] [PubMed]

430. Roessler, M.; Tesch, F.; Batram, M.; Jacob, J.; Loser, F.; Weidinger, O.; Wende, D.; Vivirito, A.; Toepfner, N.; Ehm, F.; et al.
Post-COVID-19-associated morbidity in children, adolescents, and adults: A matched cohort study including more than 157,000
individuals with COVID-19 in Germany. PLoS Med. 2022, 19, e1004122. [CrossRef] [PubMed]
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