Dr James Schaller
main page books and articles schaller health creed facebook testimonies search
menu main page what's new second opinion new patient meet doctor schaller location, travel

DNA Damage by Mycotoxins

Below is a common food mycotoxin involved in powerfully damaging DNA.

Terse introduction: there are many texts on the process of keeping mycotoxins out of food. Some counties are better than others at preventing mycotoxins from contaminating food. America is actually pretty good at preventing this problem. Of course if a child is in a moldy school, or you have mold in your home, mycotoxins will likely get into your food and you could have esophageal and stomach trouble. The mycotoxins can damage the intestines.

************************

Wang JS, Groopman JD. Department of Environmental Health Sciences, Johns Hopkins University

Mycotoxins are toxic fungal metabolites which are structurally diverse, common contaminants of the ingredients of animal feed and human food. To date, mycotoxins with carcinogenic potency in experimental animal models include aflatoxins, sterigmatocystin, ochratoxin, fumonisins, zearalenone, and some Penicillium toxins.

Most of these carcinogenic mycotoxins are genotoxic agents with the exception of fumonisins, which is currently believed to act by disrupting the signal transduction pathways of the target cells. Aflatoxin B1 (AFB1), a category I known human carcinogen and the most potent genotoxic agent, is mutagenic in many model systems and produces chromosomal aberrations, micronuclei, sister chromatid exchange, unscheduled DNA synthesis, and chromosomal strand breaks, as well as forms adducts in rodent and human cells. The predominant AFB1-DNA adduct was identified as 8, 9-dihydro-8-(N7-guanyl)-9-hydroxy-AFB1 (AFB1-N7-Gua), which derives from covalent bond formation between C8 of AFB1-8,9-epoxides and N7 of guanine bases in DNA. Initial AFB1-N7-guanine adduct can convert to a ring-opened formamidopyrimidine derivative, AFB1-FAPY. The formation of AFB1-N7-guanine adduct was linear over the low-dose range in all species examined, and liver, the primary target organ, had the highest level of the adduct. Formation of initial AFB1-N7-guanine adduct was correlated with the incidence of hepatic tumor in trout and rats. The AFB1-N7-guanine adduct was removed from DNA rapidly and was excreted exclusively in urine of exposed rats. Several human studies have validated the similar correlation between dietary exposure to AFB1 and excretion of AFB1-N7-guanine in urine. Replication of DNA containing AFB1-N7-guanine adduct-induced G-->T mutations in an experimental model. Activation of ras protooncogene has been found in AFB1-induced tumors in mouse, rat, and fish. More strikingly, the relationship between aflatoxin exposure and development of human hepatocellular carcinoma (HHC) was demonstrated by the studies on the p53 tumor suppressor gene. High frequency of p53 mutations (G-->T transversion at codon 249) was found to occur in HHC collected from populations exposed to high levels of dietary aflatoxin in China and Southern Africa. Furthermore, AFB1-induced DNA damage and hepatocarcinogenesis in experimental models can be modulated by a variety of factors including nutrients, chemopreventive agents, and other factors such as food restriction and viral infection, as well as genetic polymorphisms.

[Bolding is from JLS]

Mutat Res. 1999 Mar 8;424(1-2):167-81.

To Your Safe Health,

Dr. J



Bank Towers, Tamiami Trail, Naples, FL
disclaimer privacy